当前位置: 首页 > 文章 > Soil Aggregate Stability and Aggregate-Associated Carbon Under Different Tillage Systems in the North China Plain 农业科学学报 (英文) 2013,12 (11)
Position: Home > Articles > Soil Aggregate Stability and Aggregate-Associated Carbon Under Different Tillage Systems in the North China Plain Journal of Integrative Agriculture 2013,12 (11)

Soil Aggregate Stability and Aggregate-Associated Carbon Under Different Tillage Systems in the North China Plain

作  者:
Du Zhang-liu;Ren Tu-sheng;Hu Chun-sheng;Zhang Qing-zhong;Blanco-Canqui, Humberto
单  位:
Kansas State Univ, Agr Res Ctr Hays, Hays, KS 67601 USA;Chinese Acad Sci, Ctr Agr Resources Res, Inst Genet & Dev Biol, Shijiazhuang 050021, Peoples R China;China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China;Chinese Acad Agr Sci, Inst Environm & Sustainable Dev Agr, Beijing 100081, Peoples R China
关键词:
tillage systems;aggregate stability;aggregate-associated C
摘  要:
The influences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determine the influences of various tillage systems on soil aggregation and aggregate-associated C under wheat (Triticum aestivum L.) and corn (Zea mays L.) double cropping systems in the North China Plain. The experiment was established in 2001, including four treatments: moldboard plow (MP) with residue (MP+R) and without residue (MP-R), rotary tillage with residue (RT), and no-till with residue (NT). In 2007 soil samples were collected from the 0-5, 5-10, and 10-20 cm depths, and were separated into four aggregate-size classes (>2 000, 250-2 000, 53-250, and <53 mu m) by wet-sieving method. Aggregate-associated C was determined, and the relationships between total soil C concentration and aggregation-size fractions were examined. The results showed that NT and RT treatments significantly increased the proportion of macroaggregate fractions (>2 000 and 250-2 000 mu m) compared with the MY-R and MP+R treatments. Averaged across all depths, mean weight diameters of aggregates (MWD) in NT and RT were 47 and 20% higher than that in MP+R. The concentration of bulk soil organic C was positively correlated with MWD (r=0.98; P=0.024) and macroaggregate fraction (r=0.96; P=0.036) in the 0-5 cm depth. In the 0-20 cm depth, comparing with MP+R, total C occluded in the >2000 mu m fraction was increased by 9 and 6% under NT and RT, respectively. We conclude that adoption of conservation tillage system, especially no-till, can increase soil macro-aggregation and total C accumulation in macroaggregates, which may improve soil C sequestration in the intensive agricultural region of the North China Plain.
关键词:
tillage systems%aggregate stability%aggregate-associated C
摘  要:
The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determine the inlfuences of various tillage systems on soil aggregation and aggregate-associated C under wheat (Triticum aestivum L.) and corn (Zea mays L.) double cropping systems in the North China Plain. The experiment was established in 2001, including four treatments:moldboard plow (MP) with residue (MP+R) and without residue (MP-R), rotary tillage with residue (RT), and no-till with residue (NT). In 2007 soil samples were collected from the 0-5, 5-10, and 10-20 cm depths, and were separated into four aggregate-size classes (>2 000, 250-2 000, 53-250, and<53 μm) by wet-sieving method. Aggregate-associated C was determined, and the relationships between total soil C concentration and aggregation-size fractions were examined. The results showed that NT and RT treatments signiifcantly increased the proportion of macroaggregate fractions (>2 000 and 250-2 000 μm) compared with the MP-R and MP+R treatments. Averaged across all depths, mean weight diameters of aggregates (MWD) in NT and RT were 47 and 20% higher than that in MP+R. The concentration of bulk soil organic C was positively correlated with MWD (r=0.98; P=0.024) and macroaggregate fraction (r=0.96; P=0.036) in the 0-5 cm depth. In the 0-20 cm depth, comparing with MP+R, total C occluded in the>2 000 μm fraction was increased by 9 and 6%under NT and RT, respectively. We conclude that adoption of conservation tillage system, especially no-till, can increase soil macro-aggregation and total C accumulation in macroaggregates, which may improve soil C sequestration in the intensive agricultural region of the North China Plain.

相似文章

计量
文章访问数: 6
HTML全文浏览量: 0
PDF下载量: 0

所属期刊