Position: Home > Articles > An Object-Oriented Classification Method for Detectdion of Large Wild Herbivores:a Case Study in the Source Region of Three Rivers in Qinghai
Chinese Journal of Wildlife
2017,38
(4)
561-564
基于面向对象分类的大型野生食草动物识别方法——以青海三江源地区为例
作 者:
罗巍;邵全琴;王东亮;汪阳春
单 位:
中国科学院地理科学与资源研究所陆地表层格局与模拟院重点实验室;中国科学院水利部成都山地灾害与环境研究所
关键词:
大型野生食草动物;无人机影像;多尺度分割;模板匹配;模糊逻辑分类
摘 要:
青海三江源地区位于中国西部,世界屋脊—青藏高原的腹地,青海省南部,平均海拔3 500~4 800 m,气候条件极为恶劣,传统的基于地面观测的野生动物调查方法耗时费力,难以长期开展。本文提出了一种基于无人机航拍影像的大型野生食草动物调查方法,使用2016年7月在三江源地区获取的无人机影像,采用面向对象的影像分析方法,对大型野生食草动物进行了自动识别和数量统计。首先,利用多尺度分割技术将影像中的动物轮廓从背景中大致分割出来;接着,选择目标动物的典型样本生成匹配模板对分割结果进行分类检测,初步找出一些疑似目标对象;然后深入挖掘影像中目标动物对象的光谱特征、形状特征,构建特征知识库,对检测结果进行筛选;最后,利用目视解译结果对统计提取出来的动物数量进行了精度评价。实验表明,该方法不仅提取速度快,而且精度较高。该方法将有望显著减少甚至取代部分野生动物地面调查工作,提升野生动物调查的效率和精度。
译 名:
An Object-Oriented Classification Method for Detectdion of Large Wild Herbivores:a Case Study in the Source Region of Three Rivers in Qinghai
作 者:
Luo Wei;Shao Quanqin;Wang Dongliang;Wang Yangchun;Key Laboratory of Land Surface Pattern and Simulation(IGSNRR) ,Chinese Academy of Sciences(CAS);Institute of Mountain Hazards and Environments(CAS);
关键词:
Wild large herbivores;;UAV image;;Multi-resolution segmentation;;Template matching;;Fuzzy logical classification
摘 要:
The source region of the Three Rivers in Qinghai is in western China in the hinterland of the Qinghai Tibet Plateau in southern Qinghai Province. Elevation ranges from 3 500 to 4 800 meters and climate conditions are harsh. In this region,it is difficult to use traditional wildlife monitoring methods. Based on aerial images acquired by unmanned aerial vehicles( UAVs) in this region in July 2016,we used object-oriented image analysis to automatically extract information on large wild herbivores and we analyzed quantitative statistics. First,the contours of the animals in the images were roughly separated from the background using a multi-scale segmentation technique.Next,typical samples of the target animals were selected to generate matching templates to classify and detect the segmentation results and to locate suspected target objects. Then,the spectral features and shape features of the target animal objects in the images were extracted to construct a feature knowledge base and to screen the detection results. Finally, we evaluated accuracy by combining the number of animals extracted from the statistics with those extracted from the results of visual interpretation. This method had both high extraction speed and high precision. The method is expected to significantly reduce or even replace part of the ground survey for wildlife,and improve the efficiency and accuracy of wildlife survey.
相似文章
-
玛多县大型野生食草动物种群数量对草畜平衡的影响研究 [杨帆, 邵全琴, 郭兴健, 李愈哲, 王东亮, 张雅娴, 汪阳春, 刘纪远, 樊江文] 草业学报 2018 (7) 1-13