当前位置: 首页 > 文章 > 基于资源一号02C高分辨率数据的农业区土地利用分类 农业机械学报 2015,46 (1) 278-284
Position: Home > Articles > Classifications of Agricultural Land Use Based on High-spatial Resolution ZY1-02C Remote Sensing Images Transactions of the Chinese Society for Agricultural Machinery 2015,46 (1) 278-284

基于资源一号02C高分辨率数据的农业区土地利用分类

作  者:
林楠;姜琦刚;杨佳佳;陈永良;马玥
单  位:
吉林大学综合信息矿产预测研究所;吉林大学地球探测科学与技术学院;沈阳地质调查中心
关键词:
农业区;土地利用;资源一号02C;最小二乘支持向量机;高分辨率遥感
摘  要:
利用最小二乘支持向量机良好的非线性划分能力,基于资源一号02C高分辨率遥感数据,结合图像形状、纹理特征等信息,对农业区土地利用类型进行快速分类提取,结果表明:资源一号02C高分辨率数据可以快速有效地实现土地类型划分,加入特征信息后的图像分类精度大幅度提高,而最小二乘支持向量机的分类结果也十分理想,总体分类精度达到82.53%,Kappa系数达到0.807 1,高于传统图像分类方法,为利用国产高分辨率卫星进行土地类型划分提供了快速可行的方法。
译  名:
Classifications of Agricultural Land Use Based on High-spatial Resolution ZY1-02C Remote Sensing Images
作  者:
Lin Nan;Jiang Qigang;Yang Jiajia;Chen Yongliang;Ma Yue;College of Geo-Exploration Science and Technology,Jilin University;College of Surveying and Prospecting Engineering,Jilin Jianzhu University;Shenyang Institute of Geology and Mineral Resources;Mineral Resources Prediction Institute of Comprehensive Information,Jilin University;
关键词:
Agricultural land Land use ZY1-02C Least square support vector machine High-spatial resolution
摘  要:
Applying the good nonlinear classification ability of the least squares support vector machine( SVM) algorithm,this paper conduced the classification of land use in agricultural district from the highspatial resolution ZY1-02 C remote sensing images,which was based on the SVM method integrating information of shape and texture. It shows that the high-spatial resolution ZY1-02 C data can realize land classification quickly and effectively,and the classification accuracy is increased by adding the feature information. The least squares SVM classification results were ideal,the overall accuracy was 82. 53%,and the Kappa coefficient was 0. 807 1. It has higher accuracy than traditional method and provides a feasible method for the classification of land use based on domestic high-spatial resolution satellite.

相似文章

计量
文章访问数: 14
HTML全文浏览量: 0
PDF下载量: 1

所属期刊

推荐期刊