当前位置: 首页 > 文章 > LM-BP神经网络在农业总产值预测的应用 安徽农业科学 2014 (28) 10009-10011+10037
Position: Home > Articles > Application of LM-BP Neural Network in Predicting Gross Agricultural Product Journal of Anhui Agricultural Sciences 2014 (28) 10009-10011+10037

LM-BP神经网络在农业总产值预测的应用

作  者:
张自敏;樊艳英;陈冠萍
单  位:
贺州学院计算机科学与信息工程学院;贺州学院教育技术中心
关键词:
农业生产总值;人工神经网络;LM-BP神经网络;预测
摘  要:
农业生产总值是衡量一个地区农业发展水平的重要指标,农业生产总值受多方因素的影响,具有非线性的特征,为此,提出了LM-BP神经网络预测农业生产总值的模型及方法。以农作物播种面积、粮食产量、甘蔗产量、木薯产量、茶叶产量、肉类产量、水产品产量、松脂产量及油茶籽产量等与农业生产总值相关指标作为网络输入,通过广西2000~2012年农业生产总值数据仿真试验分析表明,LM-BP神经网络预测结果与实际值有较好的拟合度。
译  名:
Application of LM-BP Neural Network in Predicting Gross Agricultural Product
作  者:
ZHANG Zi-min;FAN Yan-ying;CHEN Guan-ping;Center of Education Technology,Hezhou University;School of Computer Science and Information Engineering,Hezhou University;
关键词:
Gross agricultural product;;Artificial neural networks;;Levenberg Marquardt Back Propagation(LM-BP) neural network;;Prediction
摘  要:
Gross agricultural product is an important indication to measure the agricultural development level of a region. It would be affected by many factors,owning the character of non-linearity. For this reason,LM-BP neural network was put forward as the model and method for predicting gross agricultural product. Taking the indications of the sown area of crop,the output of grain,sugarcane,cassava,tea,meat,aquatic products,turpentine and oil-tea camellia seed,etc. as inputs,during 2000 to 2012 in Guangxi,the gross agricultural product data from the analysis of simulation experiment shows that the prediction of LM-BP neural network fits well with actual results.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊