当前位置: 首页 > 文章 > 灰色RBF网络在西湖叶绿素a预测中的应用 农机化研究 2008 (1) 163-167
Position: Home > Articles > Grey RBF Network Application in Prediction of Chlorophyll-a in West Lake Journal of Agricultural Mechanization Research 2008 (1) 163-167

灰色RBF网络在西湖叶绿素a预测中的应用

作  者:
朱玲;裴洪平;陈荣
单  位:
浙江大学环境与资源学院环境科学系
关键词:
自动控制技术;叶绿素a;应用;灰色RBF神经网络;短期预测;杭州西湖
摘  要:
以西湖常规检测的水质参数数据为研究对象,对初始数据进行预处理,筛选具有代表性的水温、pH等水质参数作为网络输入变量;以Chl-a作为输出变量,建立灰色RBF神经网络,并比较它与普通RBF网络在预测精度、网络收敛速度等方面的性能。结果表明,与灰色理论相结合的灰色RBF网络表现出了比RBF神经网络更好的数据拟合能力。运用灰色RBF神经网络来预测短期内西湖水质参数变化时,其与实际值的误差较小,表明灰色RBF神经网络能够有效地模拟水体水质参数的变化趋势,可为水体富营养化趋势预测和治理提供依据。
译  名:
Grey RBF Network Application in Prediction of Chlorophyll-a in West Lake
作  者:
ZHU Ling, PEI Hong-ping, CHEN Rong (Department of Environmental Science, College of Environment and Resource, Zhejiang University, Hangzhou 310028, China)
关键词:
auto-control technology; chlorophyll-a; application; grey RBF neural network; short-time prediction; Hangzhou West lake
摘  要:
Based on the quality parameter data of the water in the West Lake, this study pre-treats initial data, selects representative parameters (water temperature, PH as the network input variables and chlorophyll-a as the output variable) to and Grey Theory related Grey RBF neural network. Compared with Radial Basis Function (RBF) in terms of their precision of prediction and speed of network convergence, Grey Theory-related Grey RBF neural network are better at data fitting than RBF. The error between data derived from water quality measurement and the forecasted water quality changes of the West Lake using Grey RBF neural network is rather small. This indicates that Grey RBF Neural Network is efficient in simulating trend of water quality parameter changes, and thus provides scientific guidance for water eutrophication forecast and treatment.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊