当前位置: 首页 > 文章 > 蚁群神经网络用于农村电力短期负荷预测 农机化研究 2008 (10) 176-179+184
Position: Home > Articles > Application of Ant Colony Neural Network for Rural Short-term Load Forecasting of Power System Journal of Agricultural Mechanization Research 2008 (10) 176-179+184

蚁群神经网络用于农村电力短期负荷预测

作  者:
师春祥;王晶;张文静;段庆
单  位:
中央司法警官学院信息管理系;中央司法警官学院教务处;河北农业大学信息科学与技术学院;河北农业大学现代教育技术中心
关键词:
蚁群算法;神经网络;短期负荷预测;农村电网
摘  要:
为了进一步提高农村电力系统短期负荷预测模型的性能,实现准确与快速预测农村电力系统负荷的目的,将蚁群算法(ACA)作为BP神经网络的学习算法,构造了一种蚁群神经网络(ACAN)预测模型。对某农村地区电力系统短期负荷预测的计算实例表明,基于蚁群神经网络的负荷预测方法与传统的BP神经网络预测方法相比,具有较强的自适应能力和较好的效果。
译  名:
Application of Ant Colony Neural Network for Rural Short-term Load Forecasting of Power System
作  者:
SHI Chun-xiang1a, WANG Jing2a, ZHANG Wen-jing1b,DUAN Qing2b (1. Agricultural University of Hebei a.Modern Educational Technology Center;b. College of Information Science and Technology,Baoding 071000,China; 2. Central Institute for Correctional Police a.Dept. of Information Management; b.School teaching,Baoding 071000,China)
关键词:
ant colony algorithm; neural network; short-term load forecasting; rural power grid
摘  要:
In order to improve capacity of rural short-term load forecasting of powersystem and make short term load forecasting more accurate and fast, a kind of Ant Colony Algorithm neural networks forecasting model is established by using the Ant Colony Algorithm to train the BP neural networks. The Ant Colony Algorithm is used to optimize the feed-forward neural networks in the design of this kind of neural networks. The results of an example of rural short term power system load forecasting show the better adaptive ability and forecasting effect of the CACN than those of the traditional BP neural network method.

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊