当前位置: 首页 > 文章 > 基于RBF神经网络的土壤分类设计 安徽农业科学 2009,37 (13) 487-488
Position: Home > Articles > Design of Soil Mapping System Based on RBF Neural Network Journal of Anhui Agricultural Sciences 2009,37 (13) 487-488

基于RBF神经网络的土壤分类设计

作  者:
孙福振;李艳;李业刚
单  位:
山东理工大学计算机科学与技术学院
关键词:
神经网络;土壤分类;遥感图象;RBF
摘  要:
为了提高土壤遥感图象分类精度,把径向基函数(Radial Basis Function,RBF)神经网络应用到遥感土壤分类系统,并基于MATLAB平台仿真模拟。仿真结果表明,经过训练的RBF神经网络可有效识别土壤特征,实现自动土壤分类。
译  名:
Design of Soil Mapping System Based on RBF Neural Network
作  者:
SUN Fu-zhen et al(College of Computer Science and Technology,Shandong University of Technology,Zibo,Shandong 255049)
关键词:
Neural network;Soil mapping;Remote sensing diagraph;RBF
摘  要:
This study introduces the design of soil mapping system based on radial basis function neural network(RBF-NN) to improve the effect of soil mapping.All simulation is based on MAT-LAB platform.The simulation results show that the trained RBF-NN is feasible to recognize the soil features and helpful for realizing automatic soil mapping.

相似文章

计量
文章访问数: 6
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊