当前位置: 首页 > 文章 > 贝努利不等式与函数(1+1/x)~x 极限存在的论证 河北科技师范学院学报 1989 (4) 13-17
Position: Home > Articles > Demonstrating on the Existence of the Limit of the Function(1+1/X)~x with Bernoulli's Inequality Journal of Hebei Normal University of Science & Technology 1989 (4) 13-17

贝努利不等式与函数(1+1/x)~x 极限存在的论证

作  者:
王永坤
关键词:
贝努利不等式;估值;极限
摘  要:
作者在长期的工作实践中探索发现,函数(1+1/x)~x 极限存在可否采用别的好途径解决?本文对贝努利不等式进行全面的分析研究,利用它给出应用极为广泛的函数(1+1/x)~x 极限存在一种巧妙而新颍、简捷而明瞭的论证。
译  名:
Demonstrating on the Existence of the Limit of the Function(1+1/X)~x with Bernoulli's Inequality
作  者:
Wang Yongkun (Hebei Agrotechnical Teachers College)
关键词:
Bernoulli's inequality;;assessed value;;limit
摘  要:
The function (1+1/x)~x was applied much extensively.The auther had been researched in practices of a long-term of work that weather the existence of the function Limit could be demonstrated by other better way.In the paper Bernoulli~s ineqnality was analysed in an all -round way with which a new.ingenious and concise demonstration of the existence of the function limit was odtained.
计量
文章访问数: 11
HTML全文浏览量: 0
PDF下载量: 0

所属期刊