当前位置: 首页 > 文章 > 基于网络GIS的作物品质监测与调优栽培系统 农业工程学报 2004,20 (6) 120-123
Position: Home > Articles > WebGIS-based system for crop quality monitoring and planting optimization Transactions of the Chinese Society of Agricultural Engineering 2004,20 (6) 120-123

基于网络GIS的作物品质监测与调优栽培系统

作  者:
潘瑜春;王纪华;赵春江;冯仲科
单  位:
国家农业信息化工程技术研究中心;北京林业大学资源与环境学院
关键词:
作物;品质监测;调优栽培;网络地理信息系统
摘  要:
以实现小麦优质高效生产为目标,探讨了基于网络GIS的作物品质监测与肥水调优栽培系统的设计、实现与应用。系统以组件GIS、网络GIS和空间数据库技术等主流地理信息技术为支持,实现以遥感为主要数据源的多源数据融合分析、模型与知识的灵活管理。系统以小麦栽培农艺学知识为基础,明确影响小麦籽粒品质形成的主要因子,通过反演模型和评价模型从遥感影像中提取相关因子用以指导小麦栽培,并根据主要影响因子建立小麦品质综合评价模型,实现小麦品质预测。
译  名:
WebGIS-based system for crop quality monitoring and planting optimization
作  者:
Pan Yuchun~(1,2), Wang Jihua~1, Zhao Chunjiang~1, Feng Zhongke~2 (1.National Engineering Research Center for Information Technology in Agriculture, Beijing 100089, China; 2.College of Natural Resources & Environment, Beijing Forestry University, Beijing 100083, China)
关键词:
crop; quality monitoring; planting optimization; web-based geographical information system(GIS)
摘  要:
To realize wheat quality monitoring and planting optimization in fertilization and irrigation, a web-based geographical information system was developed. On the basis of agronomic knowledge for wheat planting, it determined the main factors which determine the formation of wheat grain quality, including wheat variety, soil texture, wheat growing status, blight temperature of wheat canopy, surface soil moisture. The multi-factors evaluation model for estimating wheat grain quality based on the multiple factors that derived from remotely sensed images or background data stored in GIS was developed. Finally, the distribution of integrative quality index or quality grades indicating the grain quality was obtained. Supported by Component GIS, Web-based GIS, Spatial Database Engine technology (SDE) and other advanced Geographical Information Technologies, the system well dealt with the fusion analysis of remotely-sensed data, GIS data and other multi-sources data, flexible management of models and knowledge, and effective linkage between Remote Sensing retrieval models and agronomic models was built.

相似文章

计量
文章访问数: 9
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊