当前位置: 首页 > 文章 > 单木和林分水平一元与二元材积模型的预估精度对比 中南林业调查规划 2017 (4) 1-6
Position: Home > Articles > Comparison on Prediction Precision of One-variable and Two-variable Volume Modelson Tree-leveland Stand-level Central South Forest Inventory and Planning 2017 (4) 1-6

单木和林分水平一元与二元材积模型的预估精度对比

作  者:
曾伟生;杨学云;陈新云
单  位:
国家林业局调查规划设计院
关键词:
材积估计;一元模型;二元模型;预估误差;杉木;马尾松
摘  要:
利用各240株的杉木和马尾松立木材积实测数据,以及100个杉木和80个马尾松样地的调查数据,对基于单木和林分水平一元与二元模型的预估误差进行了对比分析。结果表明:不论是单木水平还是林分水平模型,基于一元模型得到的估计值,其相对误差基本位于-40%~+60%之间,最大极差可以达到2.5倍以上;一元材积估计方法的精度要显著低于二元材积估计方法,国家森林资源连续清查中基于一元材积公式计算的样地蓄积数据,不宜用于森林质量和森林生产力等方面的评估。建议逐步建立各主要树种的二元林分蓄积模型,不断完善森林调查计量体系。
译  名:
Comparison on Prediction Precision of One-variable and Two-variable Volume Modelson Tree-leveland Stand-level
作  者:
ZENG Weisheng;YANG Xueyun;CHEN Xinyun;Academy of Forest Inventory and Planning,SFA;
关键词:
volume estimation;;one-variable model;;two-variable model;;prediction error;;Cunninghamia lanceolata;;Pinus massoniana
摘  要:
Based on the mensuration data of 240 sample trees of each kind( Chinese fir and Masson pine),and of 100 sample plots of Chinese fir( Cunninghamia lanceolata) and 80 sample plots of Masson pine( Pinus massoniana) forests respectively,comparisons on prediction precision of one-variable and two-variable volume models on tree-level and stand-level were compared and analyzed. The results showed that the estimated values based on one-variable models,either tree-level or stand-level ones,the relative errors were normally between-40% ~ + 60%,and the maximum difference was more than 2. 5 times. Therefore,the accuracy of one-variable volume estimation method was significantly lower than that of two-variable method,and the volume data based on one-variable method in national continuous forest inventory were not suitable for evaluating forest quality and productivity. It is recommended that two-variable stand-level volume models for main tree species should be gradually developed to constantly improve the accounting system for forest inventory.

相似文章

计量
文章访问数: 6
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊