当前位置: 首页 > 文章 > 基于模糊聚类的果实采摘超分辨率重建方法 湖北农业科学 2014,53 (3) 195-199
Position: Home > Articles > Super-Resolution Reconstruction of Agricultural Fruit Harvesting Based on Fuzzy Clustering Hubei Agricultural Sciences 2014,53 (3) 195-199

基于模糊聚类的果实采摘超分辨率重建方法

作  者:
陈露;党钊钊;王奎武
单  位:
湖南农业大学公共管理与法学学院;厦门大学电子科学系
关键词:
超分辨率重建;稀疏表示;聚类;L-曲线;果实采摘
摘  要:
在现有的基于稀疏表示的图像超分辨率算法的基础上,提出了一种新的基于模糊聚类的超分辨率重建算法,并使用L-曲线法确定正则化参数,有效降低了图像的边缘锯齿效应,提升了图像整体的平滑性,改善了基于稀疏约束算法的主客观重建质量。通过与线性插值法、Elad重建方法的仿真对比分析,基于模糊聚类的超分辨率重建方法可以显著提高果实自动化采摘图像的超分辨率重建效果。
译  名:
Super-Resolution Reconstruction of Agricultural Fruit Harvesting Based on Fuzzy Clustering
作  者:
CHEN Lu;DANG Zhao-zhao;WANG Kui-wu;Department of Institute of Public Administration and Law,Hunan Agricultural University;Department of Electronic Science,Xiamen University;
关键词:
super-resolution reconstruction;;sparse representation;;clustering;;L-curve;;fruit harvesting
摘  要:
Based on existing image sparse representation based super-resolution algorithm, a new super-resolution reconstruction algorithm based on fuzzy clustering and L-curve method was proposed to determine the regularization parameter, to enhance the overall smoothness of the image by effectively reducing the image jagged edge effects, effectively improve the algorithm based on subjective and objective constrained sparse reconstruction quality. By linear interpolation, Elad simulation method comparison analysis, super-resolution reconstruction method based on fuzzy clustering can significantly improve the effect of super-resolution reconstruction automated picking fruit image.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊