摘 要:
土壤磷素含量是评价土壤养分的重要指标之一。利用热红外发射率数据对土壤全磷含量进行反演的研究较少且多使用常规线性回归方法,本文利用东北海伦地区采集的热红外航空成像光谱仪TASI(Thermal Airborne Hyperspectral Imager)数据,通过机器学习方法探究黑土土壤发射率与全磷含量关系,选出最优模型对研究区土壤全磷含量进行预测研究。结果表明:在8~11.5μm范围内,土壤热红外发射率值随着全磷含量的增加而增加;除原始光谱10.792μm这一波段外,发射率值及其数学变换与全磷含量相关系数均在0.5以下,相关性较弱;在DNN(Deep Neural Networks)训练集和测试集中,从模型精度和PSO(Particle Swarm Optimiazation)算法优化时间来看,弹性传播训练算法(RP)表现最佳,决定系数R2分别为0.51、0.7,均方根误差RMSE分别为0.0443、0.0301;激活函数对本次构建的网络精度影响非常有限,激活函数为Tansig和ReLU的深度神经网络模型训练集精度基本与偏最小二乘及逐步回归模型一致,测试集精度有所提高但稳定性较为欠缺;研究区土壤全磷含量整体较高,水田和旱田含量均大于0.8 g kg-1,城镇及建筑群密集程度与土壤全磷含量呈负相关,与偏最小二乘模型对土壤全磷含量预测结果相比,神经网络模型对研究区土壤全磷含量小于0.6 g kg-1和0.6~0.8 g kg-1两区间做了更多划分,将更多人为活动密集区附近像元划分到该含量区间内,从而使得预测含量更加符合真实情况分布;总体来看,全磷含量最高值集中分布于研究区西部、西北及西南部,但在东部及其北部区域则呈无规律性分散分布,中部地区及其余地区含量值大多为0.8~1.0 g kg-1。综上,合适调参的深度神经网络模型在反演土壤元素类问题中的表现与偏最小二乘及逐步回归等方法相比更加具有发展的潜力,在样本数据量足够的前提下,深度神经网络能够得到充分训练从而使得预测结果更加精确、稳定。