当前位置: 首页 > 文章 > 元胞多目标粒子群优化算法与其应用 农业机械学报 2013,44 (12) 280-287+320
Position: Home > Articles > Algorithm and Application of Cellular Multi-objective Particle Swarm Optimization Transactions of the Chinese Society for Agricultural Machinery 2013,44 (12) 280-287+320

元胞多目标粒子群优化算法与其应用

作  者:
朱大林;詹腾;张屹;田红亮
单  位:
三峡大学水电机械设备设计与维护湖北省重点实验室
关键词:
元胞自动机;粒子群算法;速度控制策略;多目标优化
摘  要:
针对现有多目标粒子群算法多样性不佳,难以平衡多目标优化的全局搜索和局部寻优的能力,提出了一种元胞多目标粒子群算法。在分析多目标粒子算法理论基础上,该算法将元胞自动机思想融入粒子群算法,研究粒子之间相互关系和信息传递机制,并提出一种粒子飞行速度控制策略。实验证明,新算法相对于4种比较算法,在求解含有无约束和有约束的多目标优化问题时有更好的收敛性和多样性,将其应用于盘式制动器优化设计,得到的解精度更高。
译  名:
Algorithm and Application of Cellular Multi-objective Particle Swarm Optimization
作  者:
Zhu Dalin;Zhan Teng;Zhang Yi;Tian Hongliang;Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance,China Three Gorges University;
关键词:
Cellular automata Particle swarm optimization Speed control strategy Multi-objective optimization
摘  要:
For improving the diversity of existing multi-objective particle swarm optimization algorithm and keeping the balance between exploration and exploitation well,a multi-objective cellular PSO was proposed. The algorithm combined the concept of cellular automata with the multi-objective PSO theory. In addition,the relationship between the particles and the information transmission mechanism was studied,and a particle flight speed control strategy was presented. The results indicate that the improved algorithm outperforms the four compared algorithms concerning the convergence and diversity in solving multi-objective optimization problems with unconstraint and constraint. And also,the new algorithm can get more accurate solutions when applied in disc brake design problem.

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊