当前位置: 首页 > 文章 > 基于机器视觉的蜡质巢础的破损检测系统 安徽农业科学 2011,39 (12) 519-521
Position: Home > Articles > Detection of Damaged Foundation Based on Machine Vision Journal of Anhui Agricultural Sciences 2011,39 (12) 519-521

基于机器视觉的蜡质巢础的破损检测系统

作  者:
齐晓娜;姜海勇
单  位:
河北农业大学机电工程学院;河北金融学院信息管理与工程系
关键词:
巢础;破损;机器视觉;Labview;Imaq Vision
摘  要:
[目的]采用机器视觉技术,对蜡质巢础片进行破损检测。[方法]首先对采集到的巢础片图像进行二值化、中值滤波和图像增强等预处理,然后采用区域生长法提取破损区域。根据破损区域的面积剔除破损巢础片。软件系统编写采用Labview及Imaq vision。[结果]经试验,破损区域的检出率可达到98.4%。[结论]采用机器视觉技术进行巢础片的破损检测,系统平均响应速度快、检测精度高,完全满足巢础自动化生产的要求。
译  名:
Detection of Damaged Foundation Based on Machine Vision
作  者:
QI Xiao-na et al(Department of Information Management & Engineering,Hebei Finance University,Baoding,Hebei 071051)
关键词:
Nest foundation;Damage;Machine vision;Labview;Imaq vision
摘  要:
[Objective] Machine visual technique was applied to test the damage on wax nest foundation image.[Method] First,binaryzation,median filtering and image strengthening were conducted to the obtained nest foundation images.Then,damaged area was extracted by regional growth method.Damaged net foundation image was eliminated based on the damaged area.Software editor adopted Labview,Imaq and vision.[Result] According to the experiment,the test rate in the damaged area was 98.4%.[Conclusion] Damage test of net foundation image was performed by machine visual technique.The average corresponding speed of the system was fast and the test accuracy was high,which met the requirement of automatic production of net foundation.

相似文章

计量
文章访问数: 13
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊