当前位置: 首页 > 文章 > A case-based method of selecting covariates for digital soil mapping 农业科学学报 (英文) 2020,19 (8)
Position: Home > Articles > A case-based method of selecting covariates for digital soil mapping Journal of Integrative Agriculture 2020,19 (8)

A case-based method of selecting covariates for digital soil mapping

作  者:
Peng, Liang;Cheng-zhi, Qin;A-xing, Zhu;Zhi-wei, Hou;Nai-qing, Fan;Yi-jie, Wang
单  位:
Univ Wisconsin Madison, Dept Geog, Madison, WI 53706 USA;Nanjing Normal Univ, Key Lab Virtual Geog Environm, Minist Educ, Nanjing 210023, Peoples R China;Univ Chinese Acad Sci, Beijing 100049, Peoples R China;Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China;Nanjing Normal Univ, Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Sch Geog, Nanjing 210097, Peoples R China
关键词:
digital soil mapping;covariates;case-based reasoning;Random Forest
摘  要:
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping (DSM). The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples. To solve the problem, this paper proposed a case -based method which could formalize the covariate selection knowledge contained in practical DSM applications. The proposed method trained Random Forest (RF) classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application. In this study, we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer -reviewed journal articles to evaluate the performance of the proposed case -based method by Leave -One -Out cross validation. Compared with a novices? commonly -used way of selecting DSM covariates, the proposed case -based method improved more than 30% accuracy according to three quantitative evaluation indices (i.e., recall , precision , and F1 -score ). The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains, such as landslide susceptibility mapping, and species distribution modeling.
关键词:
digital soil mapping%covariates%case-based reasoning%Random Forest
摘  要:
Selecting a proper set of covariates is one of the most important factors that influence the accuracy of digital soil mapping (DSM). The statistical or machine learning methods for selecting DSM covariates are not available for those situations with limited samples. To solve the problem, this paper proposed a case-based method which could formalize the covariate selection knowledge contained in practical DSM applications. The proposed method trained Random Forest (RF) classifiers with DSM cases extracted from the practical DSM applications and then used the trained classifiers to determine whether each one potential covariate should be used in a new DSM application. In this study, we took topographic covariates as examples of covariates and extracted 191 DSM cases from 56 peer-reviewed journal articles to evaluate the performance of the proposed case-based method by Leave-One-Out cross validation. Compared with a novices' commonly-used way of selecting DSM covariates, the proposed case-based method improved more than 30% accuracy according to three quantitative evaluation indices (i.e., recall, precision, and F1-score). The proposed method could be also applied to selecting the proper set of covariates for other similar geographical modeling domains, such as landslide susceptibility mapping, and species distribution modeling.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊