当前位置: 首页 > 文章 > 三维点云数据中离群噪声点快速剔除的方法研究 内蒙古农业大学学报(自然科学版) 2017 (1) 93-97
Position: Home > Articles > THE RESEARCH OF REMOVING STRAY NOISE FAST FROM POINT CLOUD DATA OF THREE-DIMENSIONAL Journal of Inner Mongolia Agricultural University(Natural Science Edition) 2017 (1) 93-97

三维点云数据中离群噪声点快速剔除的方法研究

作  者:
王春兰;薛河儒;姜新华;周艳青
单  位:
内蒙古农业大学计算机与信息工程学院
关键词:
散乱点云;k-近邻点;中值滤波;离群点;噪声数据
摘  要:
针对手持式三维激光扫描仪进行目标点采集时,由于人为因素、目标表面及仪器自身因素等影响,所产生的离群噪声点会严重影响后期点云数据的处理和重建精度、速度等问题,改进了k-近邻搜索方法,并提出将改进的k-近邻搜索方法与点云中值滤波相结合的方法。首先,通过改进的k-近邻搜索方法可以实现孤立噪声点及部分块状离群噪声数据去除,对比现有的k-近邻点搜索建立拓扑关系,搜索的计算量及计算速度有了很大改善;然后再利用点云中值滤波方法对点云数据进行处理,可以实现离群噪声点的全部去除。实验结果表明,该改进算法与中值滤波相结合可以快速、高效的识别离群噪声数据点并剔除。
译  名:
THE RESEARCH OF REMOVING STRAY NOISE FAST FROM POINT CLOUD DATA OF THREE-DIMENSIONAL
作  者:
WANG Chunlan;XUE Heru;JIANG Xinhua;ZHOU Yanqing;College of Computer and Information Engineering,Inner Mongolia Agricultural University;
关键词:
Scattered point cloud;;k-nearest neighbor point;;median filtering;;outliers;;noise data
摘  要:
The noise data could be produced when we scanned the object by Handy 3D scanner due to human factors,the target surface and the instrument itself factors etc. Noised point cloud data could seriously affect the precision and efficiency of three-dimensional reconstruction in late stage. To this problem,the improved the algorithm of k-nearest neighbors and presented method that combined the k-nearest neighbor denoising and median filtering. Firstly,the improved k-nearest neighbors algorithm could establish topology relationship fast,identify and delete some noise data; then,using the filter method processed the point cloud data and all noise data could be identified and deleted. The experimental results show that the this method can eliminate the stray noise from the point cloud data quickly and accurately and keep ideal target.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊