当前位置: 首页 > 文章 > 基于RBF神经网络的农用柴油机故障诊断研究 农机化研究 2012,34 (5) 218-221+226
Position: Home > Articles > Research on Fault Diagnosis for Agricultural Diesel Engine Based on RBF Neural Network Journal of Agricultural Mechanization Research 2012,34 (5) 218-221+226

基于RBF神经网络的农用柴油机故障诊断研究

作  者:
朱玉荣;吕建新;曾宪;刘正国
单  位:
中国人民武装警察部队工程学院
关键词:
柴油机;RBF神经网络;小波包;配气机构;故障诊断
摘  要:
柴油机以其良好的动力性、可靠性、经济性在农用机械中广泛应用,但对农用柴油机施行及时的不解体故障诊断却并非易事。为此,以配气机构故障为例,提出了将小波包分解与RBF神经网络结合的故障诊断方法,对降噪后的气缸盖振动信号进行小波包分解,构造故障特征向量作为故障样本,并用训练好的RBF神经网络进行模式识别。试验结果证明,该方法具有良好的诊断效果和广泛的工程应用前景。
译  名:
Research on Fault Diagnosis for Agricultural Diesel Engine Based on RBF Neural Network
作  者:
Zhu Yurong,Lv Jianxin,Zeng Xian,Liu Zhengguo(Department of Equipment and Transportation,Engineering College of CAPF,Xi'an 710086,China)
关键词:
diesel engine;RBF neural network;wavelet packet;valve;fault diagnosis
摘  要:
Diesel engine is widely used in transport vehicles and agricultural machinery because of its good power performance,reliability,and economy,but the non-disintegration of fault diagnosis on it is not easy.So this paper takes the valve train failure for example.It proposed a fault diagnosis method which is wavelet packet decomposition and RBF neural network.The vibration signals of cylinder after noise reduction are decomposed by wavelet packet.The fault feature vector is structed as fault samples and the pattern is identified by trained RBF neural network.The test's results proved that the method has a good diagnosic results and a good project application.

相似文章

计量
文章访问数: 13
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊