当前位置: 首页 > 文章 > 基于傅里叶变换红外光谱技术和软独立模式分类法的牛奶分类识别 乳业科学与技术 2012,35 (2) 34-37
Position: Home > Articles > Discrimination of Milk by FTIR and Soft Independent Modeling of Class Analogy Journal of Dairy Science and Technology 2012,35 (2) 34-37

基于傅里叶变换红外光谱技术和软独立模式分类法的牛奶分类识别

作  者:
穆海波;殷秀秀;艾连中;顾小红
单  位:
江南大学食品科学与技术国家重点实验室;光明乳业股份有限公司乳业生物技术国家重点实验室
关键词:
傅里叶变换红外光谱法;软独立模式分类法;牛奶;模式识别
摘  要:
利用傅里叶变换红外光谱法(FTIR)结合软独立模式分类法(SIMCA)对不同类别的牛奶进行识别。通过对光谱数据基线校正和Savitzky-Golay平滑处理后,在3100~850cm-1光谱区域,利用留一交互验证法建立获得主成分分析(PCA)最优模型。在α=5%显著水平下,最优模型对纯牛奶、低乳糖奶、低脂奶和高蛋白奶的识别率分别为80%、80%、100%和80%,拒绝率分别为93%、100%、100%和93%。表明FTIR结合SIMCA可成为快速识别牛奶类别的有效方法。
译  名:
Discrimination of Milk by FTIR and Soft Independent Modeling of Class Analogy
作  者:
MU Hai-bo1,YIN Xiu-xiu2,3,AI Lian-zhong1,GU Xiao-hong2,(1.State Key Laboratory of Dairy Biotechnology,Bright Dairy & Food Co.Ltd.,Shanghai 200436,China; 2.State Key Laoratory of Food Science and Technology,Jiangnan University,Wuxi 214122,China; 3.School of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
关键词:
FTIR;SIMCA;milk;pattern recognition
摘  要:
Fourier transform infrared spectroscopy(FTIR) combined with soft independent modeling of class analogy(SIMCA) method was employed to the identification of different varieties of milk.The optimized PCA model was built by leave-one-out cross-validation(LOOCV) method after series of pre-treatments such as baseline correction and Savitzky-Golay smoothing in the region of 3100 — 850 cm-1.Under the α =5% significance level,the identification rates of this model for pure milk,low lactose milk,low fat milk and high protein milk were 80%,80%,100% and 80%,respectively,and the rejection rates were 93%,100%,100% and 93%,respectively.This indicates that FTIR combined with SIMCA is a valid method for rapid identification of different varieties of milk.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊