Position: Home > Articles > Positive Homoclinic Orbits for a Class of the Second Order Differential Equations
Journal of Southwest University(Natural Science Edition)
2007,29
(3)
4-8
一类二阶微分方程的正同宿轨(英文)
作 者:
万莉莉;唐春雷
单 位:
西南大学数学与统计学院
关键词:
正同宿轨;二阶微分方程;变分方法
摘 要:
运用变分方法证明了一类二阶微分方程-α(x)u+β(x)u2+γ(x)u3=0,x∈R的正同宿轨存在性,其中系数函数α(x),β(x),γ(x)满足xα′(x)≥0,xβ′(x)≤0,xγ′(x)≤0对任意x∈R成立.
译 名:
Positive Homoclinic Orbits for a Class of the Second Order Differential Equations
作 者:
WAN Li-li,TANG Chun-lei School of Mathematics and Statistics,Southwest University,Chongqing 400715,China
关键词:
positive homoclinic orbit;second order differential equation;variational approach
摘 要:
The existence of positive homoclinic orbits is obtained by the variational approach for a class of the second order differential equations-α(x)u+β(x)u2+γ(x)u3=0,where the coefficient functions α(x),β(x),γ(x) satisfy xα′(x)≥0,xβ′(x)≤0,xγ′(x)≤0 for all x∈R.