当前位置: 首页 > 文章 > 基于线性混合效应的红松人工林枝条生物量模型 应用生态学报 2013,24 (12) 3391-3398
Position: Home > Articles > Linear mixed modeling of branch biomass for Korean pine plantation Chinese Journal of Applied Ecology 2013,24 (12) 3391-3398

基于线性混合效应的红松人工林枝条生物量模型

作  者:
董利虎;李凤日;贾炜玮
单  位:
东北林业大学林学院
关键词:
红松人工林;枝条生物量;线性混合模型;固定效应;随机效应
摘  要:
基于黑龙江省孟家岗林场60株红松解析木3643个枝条生物量的实测数据,利用全部子回归技术建立了枝条生物量模型(枝、叶和枝总生物量模型),最终选择lnw=k1+k2lnL b+k3lnD b为枝条生物量最优基础模型.利用SAS 9.3统计软件的PROC MIXED模块建立枝条生物量混合模型,并采用AIC、BIC、对数似然值和似然比等统计指标评价不同模型的拟合效果.结果表明:红松解析木的叶和枝总生物量混合模型以k1、k2、k3作为随机效应参数的拟合效果最好,而枝生物量混合模型以k1、k2作为随机效应参数的拟合效果最好.最后将枝条生物量最优基础模型与最优混合模型进行模型检验.混合模型各项指标优于基础模型,能有效地提高模型的预估精度,并且通过方差协方差结构校正随机参数来反映树木之间的差异.
译  名:
Linear mixed modeling of branch biomass for Korean pine plantation
作  者:
DONG Li-hu;LI Fengri;JIA Wei-wei;School of Forestry,Northeast Forestry University;
关键词:
Pinus koraiensis plantation;;branch biomass;;linear mixed model;;fixed effects;;mixed effects
摘  要:
Based on the measurement of 3643 branch biomass samples of 60 Korean pine(Pinus koraiensis) trees from Mengjiagang Forest Farm,Heilongjiang Province,all subset regressions techniques were used to develop the branch biomass model(branch,foliage,and total biomass models).The optimal base model of branch biomass was developed as lnw = k1+ k2 lnL b+ k3 lnD b.Then,linear mixed models were developed based on PROC MIXED of SAS 9.3 software,and evaluated with AIC,BIC,Log Likelihood and Likelihood ratio tests.The results showed that the foliage and total biomass models with parameters k1,k2 and k3 as mixed effects showed the best performance.The branch biomass model with parameters k1 and k2 as mixed effects showed the best performance.Finally,we evaluated the optimal base model and the mixed model of branch biomass.Model validation confirmed that the mixed model was better than the optimal base model.The mixed model with random parameters could not only provide more accurate and precise prediction,but also showed the individual difference based on variance-covariance structure.

相似文章

计量
文章访问数: 9
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊