当前位置: 首页 > 文章 > 支持向量回归机在农业供应链预测中的应用 四川农业大学学报 2008,26 (3) 290-292
Position: Home > Articles > Applification of Support Vector Regression for Forecasting Agricultral Supply Chain Journal of Sichuan Agricultural University 2008,26 (3) 290-292

支持向量回归机在农业供应链预测中的应用

作  者:
陈冬冬;杨春
单  位:
西南交通大学物流学院;四川农业大学经济管理学院
关键词:
支持向量回归机;农业供应链;预测模型;SVM
摘  要:
为了提农业供应链预测的能力,应用基于结构风险最小化准则的标准支持向量回归机方法来研究供应链预测问题。在选择适当的参数和核函数的基础上,通过对实例研究,对时间序列数据进行预测,并与人工神经网络方法进行对比,发现该方法能获得最小的训练相对误差和测试相对误差。结果表明,支持向量回归机是研究农业供应链预测的有效方法。
译  名:
Applification of Support Vector Regression for Forecasting Agricultral Supply Chain
作  者:
CHEN Dong-dong1,2,YANG Chun2(1.College of Logistics,Southwest Jiaotong University,Chengdu 610031,Sichuan,China;2.College of Economics and Management,Sichuan Agricultural University,Yaan 625014,Sichuan,China)
关键词:
support vector regression;agricultural supply chain;forecasting models;SVM
摘  要:
To improve the forecasting ability of agricultural supply chain,the method of support vector regression(SVR) can be applied to study the problem of agricultural supply chain,based on the principle of structural risk minimization.On the basis of choosing proper parameters and kernel functions,this method can make minimum relative errors in training and testing after making a study of examples,forecasting the time series data,and making a comparison with the method of Artificial Neural Network(ANN).The result shows that SVR is a useful way to study the forecasting of agricultural supply chain.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊