当前位置: 首页 > 文章 > 基于云模型的交通流数据挖掘 内蒙古农业大学学报(自然科学版) 2010,31 (1) 177-181
Position: Home > Articles > TRAFFIC FLOW DATA MINING BASED ON CLOUD MODEL Journal of Inner Mongolia Agricultural University(Natural Science Edition) 2010,31 (1) 177-181

基于云模型的交通流数据挖掘

作  者:
唐进君;刘芳;曹凯
单  位:
内蒙古农业大学能源与交通工程学院;山东理工大学交通与车辆工程学院
关键词:
云理论;云计算;数据挖掘;交通流量数据
摘  要:
云理论是实现概念的定性值与数字的定量值之间自然转换的有力工具,本文在概述云模型的基本概念基础上,介绍了云变换、云的并运算以及云的相似度的定义和算法。首先,以调查得到的交通流量为例,随后通过云变换将序列数据转化为云集合,从而把交通流子序列的运算转变为云模型的相似度计算问题。实验结果表明该算法在交通流数据挖掘应用中的有效性。
译  名:
TRAFFIC FLOW DATA MINING BASED ON CLOUD MODEL
作  者:
TANG Jin-jun1, LIU Fang1,CAO Cai2(1.College of Energy and Traffic Engineering,Inner Mongolia Agricultural University,Huhhot 010018,China2.Dept.of Traffic and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China)
关键词:
Cloud theory; cloud computing; data mining; traffic flow data
摘  要:
Cloud theory is a powerful tool to convert numerical quantitative analysis to conceptual qualitative analysis.Based on cloud model,definition and algorithm of cloud transformation,similar-rate calculation and combine operation of cloud are introduced concisely in this paper.Firstly,take traffic flow data as an example and translate sequence dataset into cloud dataset via cloud transformation subsequently,so as to convert the computation of traffic flow sub-sequences into similar-rate calculation.The experimental results demonstrate the effectiveness of the proposed algorithm applying in traffic flow data mining.

相似文章

计量
文章访问数: 11
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊