当前位置: 首页 > 文章 > 多变量分位数回归构建印度洋大眼金枪鱼栖息地指数 广东海洋大学学报 2009,29 (3) 52-56
Position: Home > Articles > Multivariate Quantile Regression on Habitat Suitability Index of Thunnus obesus in the Indian Ocean Journal of Guangdong Ocean University 2009,29 (3) 52-56

多变量分位数回归构建印度洋大眼金枪鱼栖息地指数

作  者:
冯波;陈新军;许柳雄
单  位:
上海海洋大学海洋科学学院
关键词:
大眼金枪鱼;栖息地指数;分位数回归;多变量;印度洋
摘  要:
以0~300m水层加权平均水温、50~150m水层的温差和氧差及其交互变量为影响因子,运用分位数回归法,寻找出环境变量与大眼金枪鱼(Thunnus obesus)延绳钓钓获率的最佳上界分位数回归方程,计算出栖息地指数(HSI),并应用地理信息系统(GIS)软件绘制各月HSI空间分布图。研究表明:大眼金枪鱼延绳钓钓获率(HR)依加权平均水温(x)、温差(y)、氧差(z)与的最佳上界分位数回归方程为HR0.70=-15.596+2.124x-0.003x3+0.033xyz-0.036y2z+0.107yz2-0.337z3;HSI空间分布为:16°S—10°N印度洋海域HSI高于0.7,HSI>0.8的海域随季节发生显著变化,马达加斯加外海至100°E、16°S—26°S海域常年存在一片HSI<0.4的区域,26°S—40°S海域的HSI介于0.4~0.5,40°S以南海域HSI<0.4,东非外海季节性地出现一片HSI<0.6的海域。利用多个环境变量的栖息地指数模型来预测分析大洋金枪鱼资源分布效果较好。
译  名:
Multivariate Quantile Regression on Habitat Suitability Index of Thunnus obesus in the Indian Ocean
作  者:
FENG Bo1,2,CHEN Xin-jun1,3,4,XU Liu-xiong1,3,4 (1. College of Marine sciences of Shanghai Ocean University,Shanghai 201306; 2. Fisheries college of Guangdong Ocean University,Zhanjiang,524025; 3. The Key Laboratory of Shanghai Education Commission for Oceanic Fishery Resources Exploitation,Shanghai 201306; 4. The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Ministry of Education,Shanghai 201306,China)
关键词:
Thunnus obesus; habitat suitability index; quantile regression; multivariate; Indian Ocean
摘  要:
Some important variables are selected to carry out quantile regression including weighted average water temperature in the 0~300 m water layer,temperature difference and dissolved oxygen difference between 50m and 150m water layer and their interactions. The optimum upper boundary equation is regressed for these variables against bigeye tuna Thunnus obesus longline hooking rate to compute habitat suitability index (HSI). The computation results are visualized by geographical information system. It shows that the optimum upper boundary equation of weighted average water temperature(x),temperature difference(y),dissolved oxygen difference (z) against bigeye tuna longline hooking rate(HR) is as follows:HR0.70=-15.596+2.124x-0.003x3+0.033xyz-0.036y2z +0.107yz2-0.337z3. The GIS maps illustrate that HSI is greater than 0.7 within 16°S—10°N in the Indian Ocean. Area significantly varies seasonally where HSI is greater than 0.8. HSI ranges from 0.4~0.5 between 26°S~40°S. There is an area of HSI less than 0.4 that exists within Madagascar to 100°E and 16°S~ 26°S throughout the year. Area of HSI less than 0.6 seasonally appears away off East Africa. It is found that the better results of resources distribution could be predicted by use of multi-environmental variables in the estimation of HSI.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊