当前位置: 首页 > 文章 > 人工神经网络在蚊虫自动鉴定中的应用(英文) 四川农业大学学报 2005,23 (4) 411-416
Position: Home > Articles > Automated Identification of Mosquito (Diptera :Culicidae) Wingbeat Frequencies by Artificial Neural Network Journal of Sichuan Agricultural University 2005,23 (4) 411-416

人工神经网络在蚊虫自动鉴定中的应用(英文)

作  者:
李振宇;周祖基;沈佐锐;姚青
单  位:
四川农业大学农学院;中国农业大学农学与生物技术学院
关键词:
蚊子;翅振频率;人工神经网络;自动鉴定
摘  要:
应用光电传感器和瞬时波形记录系统记录了5种蚊虫的翅振波形。结果显示,每种蚊虫的翅振波形为相似的正弦波。蚊虫的翅振频率虽然彼此间存在交叉,但差异明显。因此,通过建立人工神经网络对蚊虫的种类进行分类识别是可行的。研究中分别以蚊虫翅振频率和翅振波形建立人工神经网络,结果发现以翅振频率为特征值的神经网络的识别准确率高。该网络识别的平均准确率为72.67%,最高为89%。
译  名:
Automated Identification of Mosquito (Diptera :Culicidae) Wingbeat Frequencies by Artificial Neural Network
作  者:
LI Zhen-yu1,ZHOU Zu-ji1,SHEN Zuo-rui2,YAO Qing21.College of Agriculture,Sichuan Agricultural University,Yaan 625014,Sichuan,China;2.China Agricultural;University,Beijing 100094,China)
关键词:
mosquito;wingbeat frequency;artificial neural network;automatedidentification
摘  要:
The wingbeat waveforms of five species of mosquitoes were recorded by a photosensor and aWfRer system.Wingbeat waveforms of the result showthat the mosquitoesis analogical sine wave.Al-thoughtheir wingbeat frequencies are overlapped with each other,the diversities of their mean wing-beat frequencies are obvious.Thus,it is possible to construct artificial neural network for classifyingthe wingbeat frequencies of five species of mosquitoes.Artificial neural network classifiers are respec-tively built by wingbeat waveformti me series and wingbeat frequencies.The most accurate classifiertestedis an artificial neural network by using variable of wingbeat frequency.The accuracy is average72.67 %and highest 89 %.

相似文章

计量
文章访问数: 15
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊