当前位置: 首页 > 文章 > 基于卡尔曼滤波融合算法的深松耕深检测装置研究 农业机械学报 2020,51 (9) 53-60
Position: Home > Articles > Study of Tillage Depth Detecting Device Based on Kalman Filter and Fusion Algorithm Transactions of the Chinese Society for Agricultural Machinery 2020,51 (9) 53-60

基于卡尔曼滤波融合算法的深松耕深检测装置研究

作  者:
蒋啸虎;佟金;马云海;李金光;吴宝广;孙霁宇
单  位:
吉林大学生物与农业工程学院
关键词:
深松;耕深;检测装置;卡尔曼滤波数据融合算法;超声波传感器;红外传感器
摘  要:
为提高实时检测耕深的准确性,设计了基于超声波传感器和红外传感器以及卡尔曼滤波融合算法的耕深检测装置,采用超声波传感器通过渡越时间法测量耕深,采用红外传感器通过三角测距法测量耕深,通过卡尔曼滤波融合算法滤除两传感器检测数据中的杂波,并进行融合.室内试验表明,在平整地面,红外传感器检测效果优于超声波传感器;在秸秆覆盖地面,超声波传感器检测效果优于红外传感器.经卡尔曼滤波融合后的数据能充分利用两传感器在不同环境中检测的有效数据.在设定耕深为30 cm和40 cm的田间试验中,超声波传感器滤波数据的平均值分别为29.51 cm和38.79 cm,深松深度变异系数分别为2.51%和3.10%;红外传感器滤波数据的平均耕深分别为32.06 cm和41.52 cm,深松深度变异系数分别为2.41%和2.76%;而经卡尔曼滤波融合后的数据平均耕深分别为30.06 cm和39.95 cm,深松深度变异系数分别为1.07%和1.00%,说明采用滤波融合后的检测数据比单个传感器更能准确检测耕深和反映耕深变化趋势.
译  名:
Study of Tillage Depth Detecting Device Based on Kalman Filter and Fusion Algorithm

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊