当前位置: 首页 > 文章 > 基于特征选择和CNN+Bi-RNN模型的小麦抗寒性识别方法 江苏农业科学 2022,50 (10) 201-207
Position: Home > Articles > 基于特征选择和CNN+Bi-RNN模型的小麦抗寒性识别方法 Jiangsu Agricultural Sciences 2022,50 (10) 201-207

基于特征选择和CNN+Bi-RNN模型的小麦抗寒性识别方法

作  者:
金松林;来纯晓;郑颖;李艳翠;霍云凤;刘明久;张自阳;韩博;闫思尧;李龙威
单  位:
河南科技学院信息工程学院;河南师范大学计算机与信息工程学院;河南科技学院生命科技学院;河南科技学院资源与环境学院
关键词:
小麦;抗寒性识别;特征选择;CNN+Bi-RNN;样本均衡化
摘  要:
针对当前小麦抗寒性识别方法受限、资源消耗严重等问题,以国审小麦品种的文本数据为研究对象,利用特征选择算法和深度学习方法实现小麦抗寒性识别研究.首先,使用集成学习中的自适应增强(adaptive boosting,简称AdaBoost)算法和极端梯度提升(extreme gradient boosting,简称XGBoost)算法进行特征选择;然后,将卷积神经网络(convolutional neural networks,简称CNN)抽取的局部特征和双向循环神经网络(Bi-direction recurrent neural network,简称Bi-RNN)抽取的上下文特征融合,构建基于CNN+Bi-RNN的小麦抗寒性识别模型,通过试验表明选择15个特征时CNN+Bi-RNN方法的准确率、F1值和Kappa系数最高,分别为0.7898、0.8102和0.6027.最后,使用合成少数类过采样技术(synthetic minority over-sampling technique,简称SMOTE)对样本均衡化处理,处理后训练模型的准确率均有所提高,其中CNN+Bi-RNN模型的准确率达到0.8292.该方法能够较好地识别小麦抗寒性,提高育种效率.

相似文章

计量
文章访问数: 12
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊