当前位置: 首页 > 文章 > 基于多重分形和LVQ神经网络的小麦病害智能识别 湖北农业科学 2013,52 (7) 1669-1671+1675
Position: Home > Articles > Wheat Diseases Smart Recognition Based on Multi-Fractal and LVQ Neural Network Hubei Agricultural Sciences 2013,52 (7) 1669-1671+1675

基于多重分形和LVQ神经网络的小麦病害智能识别

作  者:
张飞云
单  位:
许昌学院电气信息工程学院
关键词:
小麦病害;多重分形谱;智能识别;LVQ神经网络
摘  要:
针对不同小麦病害有不同的形状特征,利用多重分形分析提取小麦病害图像的8个多重分形谱值作为小麦病害的形状特征参数,并利用这8个特征参数来索引图像数据库作为学习向量量化(LVQ)神经网络的输入,进行样本训练、分类识别。试验结果表明,该算法对小麦病害的识别率可达90.0%以上。
译  名:
Wheat Diseases Smart Recognition Based on Multi-Fractal and LVQ Neural Network
作  者:
ZHANG Fei-yun(College of Electrical and Information Engineering,Xuchang University,Xuchang 461000,Henan,China)
关键词:
wheat diseases;multi-fractal spectrum;smart recognition;learning vector quantization neural network
摘  要:
Different wheat diseases have different shape characteristics.Using multi-fractal analysis,eight multi-fractal spectrum values were extracted and used as shape characteristic parameter of wheat diseases,and then they were used to train learning vector quantization neural network.Experimental results showed that the recognition rate of the algorithm on wheat diseases could reach more than 90%.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊