当前位置: 首页 > 文章 > Evaluation of UAV-derived multimodal remote sensing data for biomass prediction and drought tolerance assessment in bioenergy sorghum
作物学报(英文版)
2022,10
(5)
Position: Home > Articles > Evaluation of UAV-derived multimodal remote sensing data for biomass prediction and drought tolerance assessment in bioenergy sorghum
The Crop Journal
2022,10
(5)
Evaluation of UAV-derived multimodal remote sensing data for biomass prediction and drought tolerance assessment in bioenergy sorghum
作 者:
Jiating Li;Daniel P. Schachtman;Cody F. Creech;Lin Wang;Yufeng Ge;Yeyin Sh
单 位:
Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, US;Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;Department of Agronomy and Horticulture, Panhandle Research and Extension Center, University of Nebraska-Lincoln, Scottsbluff, NE 69361, USA
关键词:
Crop phenotyping;Unmanned Aerial System (UAS);Thermal;Machine learning;Drought stres
摘 要:
Screening for drought tolerance is critical to ensure high biomass production of bioenergy sorghum in arid or semi-arid environments. The bottleneck in drought tolerance selection is the challenge of accurately predicting biomass for a large number of genotypes. Although biomass prediction by low -altitude remote sensing has been widely investigated on various crops, the performance of the predic-tions are not consistent, especially when applied in a breeding context with hundreds of genotypes. In some cases, biomass prediction of a large group of genotypes benefited from multimodal remote sensing data; while in other cases, the benefits were not obvious. In this study, we evaluated the performance of single and multimodal data (thermal, RGB, and multispectral) derived from an unmanned aerial vehicle (UAV) for biomass prediction for drought tolerance assessments within a context of bioenergy sorghum breeding. The biomass of 360 sorghum genotypes grown under well-watered and water-stressed regimes was predicted with a series of UAV-derived canopy features, including canopy structure, spectral reflec-tance, and thermal radiation features. Biomass predictions using canopy features derived from the mul-timodal data showed comparable performance with the best results obtained with the single modal data with coefficients of determination (R2) ranging from 0.40 to 0.53 under water-stressed environment and 0.11 to 0.35 under well-watered environment. The significance in biomass prediction was highest with multispectral followed by RGB and lowest with the thermal sensor. Finally, two well-recognized yield -based drought tolerance indices were calculated from ground truth biomass data and UAV predicted bio-mass, respectively. Results showed that the geometric mean productivity index outperformed the yield stability index in terms of the potential for reliable predictions by the remotely sensed data. Collectively, this study demonstrated a promising strategy for the use of different UAV-based imaging sensors to quantify yield-based drought tolerance.(c) 2022 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC -ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
相似文章
-
The continuous wavelet projections algorithm: A practical spectral-feature-mining approach for crop detection [Zhao Xin, Jingcheng Zhang, Ruiliang Pu, Zhang Shu, Wei He, Kaihua W] 作物学报(英文版) 2022,10 (5)