当前位置: 首页 > 文章 > 改进YOLOv3算法检测三七叶片病害 农业工程学报 2022,38 (3) 164-172
Position: Home > Articles > Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm Transactions of the Chinese Society of Agricultural Engineering 2022,38 (3) 164-172

改进YOLOv3算法检测三七叶片病害

作  者:
文斌;曹仁轩;杨启良;张健;朱晗;李知聪
单  位:
昆明理工大学现代农业工程学院;三峡大学电气与新能源学院
关键词:
算法:病害检测;YOLOv3;特征金字塔;双瓶颈层;注意力机制;三七
摘  要:
为了解决三七叶片密集病害和小区域病害检测不准确的问题,该研究提出了一种改进的YOLOv3(You Only Look Once v3)目标检测算法(AD-YOLOv3)对三七叶片各种病害进行检测.AD-YOLOv3使用注意力特征金字塔(Attention Feature Pyramid,AFP)替代YOLOv3中的原始特征金字塔,解决了特征融合过程中的干扰问题,提升了病害检测精度.使用双瓶颈层(Dual Bottleneck,DB)筛选注意力特征金字塔提取到的特征,增强特征的特异性,提升了算法的鲁棒性.AD-YOLOv3与YOLOv3相比在各项性能指标上均有提升,精确率提升2.83个百分点,F1精度提升1.68个百分点,平均精度均值(Mean Average Precision,mAP)提升1.47个百分点,针对小区域病害和密集病害的检测能力明显增强.此外,AD-YOLOv3在雾,雨,暗光等复杂环境下的抗干扰能力明显提升,该研究为三七叶片的病害检测提供了一种更优的智能检测方法.
译  名:
Detecting leaf disease for Panax notoginseng using an improved YOLOv3 algorithm
计量
文章访问数: 12
HTML全文浏览量: 0
PDF下载量: 0

所属期刊