当前位置: 首页 > 文章 > 源于核-壳结构普鲁士蓝/聚吡咯的铁氮共掺杂碳材料及其高效的氧还原性能 石河子大学学报(自然科学版) 2017 (6) 667-674
Position: Home > Articles > Iron-nitrogen-codoped carbon materials derived with core-shell prussian blue polypyrrole as electrocatalyst for effective oxygen reduction reaction Journal of Shihezi University(Natural Science) 2017 (6) 667-674

源于核-壳结构普鲁士蓝/聚吡咯的铁氮共掺杂碳材料及其高效的氧还原性能

作  者:
林智超;高歆雨;朱英;乔秀文
单  位:
石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室/省部共建国家重点实验室培育基地;北京航空航天大学仿生界面科学与技术教育部重点实验室化学与环境学院
关键词:
燃料电池;铁氮共掺杂;聚吡咯;氧还原反应;普鲁士蓝
摘  要:
燃料电池阴极氧还原反应十分缓慢,通常需要贵金属催化剂加快反应速率。目前,燃料电池阴极氧还原催化剂主要为铂及其合金纳米颗粒,但由于其成本高,自然资源有限,稳定性差,难以大规模应用。基于过渡金属与氮共掺杂的碳材料可作为氧还原反应有效且廉价的候选催化剂,受到了广泛的关注。本文研究以普鲁士蓝纳米颗粒为模板,在其表面原位聚合吡咯,得到核-壳结构的普鲁士蓝/聚吡咯纳米颗粒,再以该纳米颗粒为前驱体,经过高温裂解制备铁氮共掺杂碳纳米颗粒(Fe-N-CNPs-X,X代表高温裂解温度)。Fe-N-CNPs-X催化剂粒径约为80 nm,Fe-N-CNPs-900催化剂在碱性电解质溶液中显示出优异的氧还原催化活性:-0.17 V电位下即可产生明显的氧还原电流,接近Pt/C催化剂的峰电位(-0.15 V);起始还原电位和半波还原电位(E_(1/2))分别为-0.03 V和-0.11 V,极限电流密度为4.90 mA/cm~2,与Pt/C的起始还原电位(-0.02 V)和半波还原电位(-0.10 V)以及极限电流密度(4.86 mA/cm~2)相当;与商业Pt/C催化剂相比,Fe-N-CNPs-X催化剂具有更优的稳定性和甲醇耐受性。上述研究结果为铁氮共掺杂碳材料的实际应用奠定了基础。
译  名:
Iron-nitrogen-codoped carbon materials derived with core-shell prussian blue polypyrrole as electrocatalyst for effective oxygen reduction reaction
作  者:
Lin Zhichao;Gao Xinyu;Zhu Ying;Qiao Xiuwen;Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,State Key Laboratory Cultivation Base Jointly Constructed by Province and The Ministry,College of Chemistry and Chemical Engineering,Shihezi University;Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education,School of Chemistry and Environment,Beihang University;
关键词:
fuel cells;;iron-nitrogen-codoped;;Polypyrrole;;oxygen reduction reaction;;Prussian Blue
摘  要:
Due to the slow kinetics of the ORR, noble metal catalysts are generally required on the cathode side, principally platinum and its alloy nanoparticles. However, due to the high cost, the limited natural resources and the poor stability, it is difficult in practical application. Therefore, materials based on nitrogen-doped transition carbon metals have received considerable attention as cheap and effective candidate for ORR. Herein, The Prussian Blue/polypyrrole nanoparticles with core-shell structure were synthesized by in situ polymerization of pyrrole with Prussian blue nanoparticles as templates. Then, iron-nitrogen-codoped carbon nanoparticles(Fe-N-CNPs-X, X represents the pyrolysis temperature) was prepared by high temperature pyrolysis the Prussian Blue/polypyrrole nanoparticles. The particle size of Fe-N-CNPs-X catalyst is about 80 nm. Electrochemical measurements demonstrated that the Fe-N-CNPs-900 exhibits promising catalytic activity towards the ORR in an alkaline medium,-0.17 V potential to produce a significant oxygen reduction current, close to the Pt/C catalyst peak potential(-0.15 V),Moreover, the onset and half-wave(E_(1/2)) potentials of-0.03 and-0.11 V for Fe-N-CNPs-900, very close to Pt/C catalyst(-0.02 V and-0.10 V). The limited current density of Fe-N-CNPs-900(4.90 mA·cm~(-2)) was comparable to Pt/C(4.86 mA·cm~(-2)). It also shows superior stability compared to the commercial Pt/C catalyst, and good tolerance to methanol cross-over effect. This work opens up a simple way for mass production of Fe-N-CNPs electrocatalysts with high ORR and supercapacitor performance.

相似文章

计量
文章访问数: 17
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊