当前位置: 首页 > 文章 > Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize 农业科学学报 (英文) 2020,19 (9)
Position: Home > Articles > Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize Journal of Integrative Agriculture 2020,19 (9)

Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize

作  者:
Ye Yu-xiu;Wen Zhang-rong;Yang Huan;Lu Wei-ping;Lu Da-lei
单  位:
Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain C, Jiangsu Key Lab Crop Cultivat & Physiol, Agr Coll,Jiangsu Key Lab Crop Genet & Physiol, Yangzhou 225009, Jiangsu, Peoples R China;Huaihai Inst Technol, Huaian 222005, Peoples R China
关键词:
water deficit;waxy maize;photosynthesis;antioxidant enzyme;senescence;dry matter accumulation
摘  要:
Waxy maize is widely cultivated under rainfed conditions and frequently suffers water shortage during the late growth stage. In this study, a pot trial was conducted to examine the effects of post-silking drought on leaf photosynthesis and senescence and its influence on grain yield. Two waxy maize hybrids, Suyunuo 5 (SYN5) and Yunuo 7 (YN7), were grown under the control and drought (soil moisture content was 70-80% and 50-60%, respectively) conditions after silking in 2016 and 2017. The decrease in yield was 11.1 and 15.4% for YN7 and SYN5, respectively, owing to the decreased grain weight and number. Post-silking dry matter accumulation was reduced by 27.2% in YN7 and 26.3% in SYN5. The contribution rate of pre-silking photoassimilates transferred to grain yield was increased by 15.6% in YN7 and 10.2% in SYN5, respectively. Post-silking drought increased the malondialdehyde content, but decreased the contents of water, soluble protein, chlorophyll, and carotenoid in the leaves. The weakened activities of enzymes involved in photosynthesis (ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase) and antioxidant system (catalase, superoxide dismutase and peroxidase) reduced the photosynthetic rate (Pn) and accelerated leaf senescence. The correlation results indicated that reduced Pn and catalase activity and increased malondialdehyde content under drought conditions induced the decrease of post-silking photoassimilates deposition, ultimately resulted in the grain yield loss.
关键词:
water deficit%waxy maize%photosynthesis%antioxidant enzyme%senescence%dry matter accumulation
摘  要:
Waxy maize is widely cultivated under rainfed conditions and frequently suffers water shortage during the late growth stage. In this study, a pot trial was conducted to examine the effects of post-silking drought on leaf photosynthesis and senescence and its influence on grain yield. Two waxy maize hybrids, Suyunuo 5 (SYN5) and Yunuo 7 (YN7), were grown under the control and drought (soil moisture content was 70–80% and 50–60%, respectively) conditions after silking in 2016 and 2017. The decrease in yield was 11.1 and 15.4% for YN7 and SYN5, respectively, owing to the decreased grain weight and number. Post-silking dry matter accumulation was reduced by 27.2% in YN7 and 26.3% in SYN5. The contribution rate of pre-silking photoassimilates transferred to grain yield was increased by 15.6% in YN7 and 10.2% in SYN5, respectively. Post-silking drought increased the malondialdehyde content, but decreased the contents of water, soluble protein, chlorophyll, and carotenoid in the leaves. The weakened activities of enzymes involved in photosynthesis (ribulose-1,5-bisphosphate carboxylase and phosphoenolpyruvate carboxylase) and antioxidant system (catalase, superoxide dismutase and peroxidase) reduced the photosynthetic rate (Pn) and accelerated leaf senescence. The correlation results indicated that reduced Pn and catalase activity and increased malondialdehyde content under drought conditions induced the decrease of post-silking photoassimilates deposition, ultimately resulted in the grain yield loss.

相似文章

计量
文章访问数: 9
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊