当前位置: 首页 > 文章 > 水文多变量相空间重构自记忆模型研究 西北农林科技大学学报(自然科学版) 2009,37 (12) 229-234
Position: Home > Articles > Study on self-memory hydrologic forecasting model based on multi-dimensional phase-space reconstruction theory Journal of Northwest A & F University(Natural Science Edition) 2009,37 (12) 229-234

水文多变量相空间重构自记忆模型研究

作  者:
张高锋;沈冰;黄领梅;张晓伟;莫淑红
单  位:
西安理工大学西北水资源与环境生态教育部重点实验室;西安市水资源科研服务中心;西安市水务局
关键词:
水文;灰色关联分析;多变量相空间重构;自记忆模型;季节性指数;月蒸发能力;新疆和田
摘  要:
【目的】针对单变量相空间重构自记忆模型存在的不足,研究多变量相空间重构自记忆模型在水文预报中的适用性。【方法】根据多变量相空间重构理论构造多维相空间,并在此基础上,结合自忆性原理,建立多变量相空间重构自记忆模型,最后利用新疆和田绿洲的实测月蒸发能力资料进行验证。【结果】和田绿洲月蒸发能力实测资料检验结果表明,建立多变量相空间重构模型是可行的,可以取得理想的效果。【结论】多变量相空间重构自记忆模型的建立使得相空间重构自记忆模型从一维拓展到了多维,也使得该模型更加符合生产实际。
译  名:
Study on self-memory hydrologic forecasting model based on multi-dimensional phase-space reconstruction theory
作  者:
ZHANG Gao-feng1,2,3,SHEN Bing1,HUANG Ling-mei1,ZHANG Xiao-wei1,MO Shu-hong1(1 Key Lab of Northwest Water Resources and Environmental Ecology,MOE,XAUT,Xi'an,Shaanxi 710048,China;2 Xi'an Water Resource Scientific Research and Service Center,Xi'an,Shaanxi 710054,China;3 Xi'an Water Affairs Bureau,Xi'an,Shaanxi 710007,China)
关键词:
hydrology;grey relational analysis;multivariable state space reconstruction;self-memory model;seasonal exponent;monthly evaporation;Hotan oasis,Xinjiang
摘  要:
【Objective】 As phase-space self-memory reconstruction model by the single variable have deficiencies,the multi-dimensional phase-space was studied.【Method】 A multi-dimensional phase-space was reconstructed according to phase-space reconstruction theory with multi factors.Based on this,a self-memory hydrologic forecasting model was built and verified by monthly evaporation conducted in Hotan oasis,Xinjiang.【Result】 Through monthly evaporation capacity forecast in Hotan oasis,the case study indicates that the model is reasonable and ideal.【Conclusion】 Multivariable phase space reconstruction self-memory modeling changes one dimension phase space reconstruction into multi-dimension,which is much more in line with practical production.

相似文章

计量
文章访问数: 6
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊