当前位置: 首页 > 文章 > 基于广义回归神经网络的广西农业机械需求预测 农机化研究 2013,35 (1) 55-58
Position: Home > Articles > Agricultural Machinery Demand Forecasting in Guangxi Province Based on Generalized Regression Neural Network Journal of Agricultural Mechanization Research 2013,35 (1) 55-58

基于广义回归神经网络的广西农业机械需求预测

作  者:
罗薇
单  位:
中南大学交通运输工程学院
关键词:
农业机械;广义回归;神经网络;需求预测;交叉验证
摘  要:
提出了一种基于广义回归神经网络的农业机械需求预测模型。该模型以GRNN神经网络为基础,运用循环测试法,结合k折交叉验证进行了参数寻优和网络训练,能在历史数据样本较少的情况下获得满意的预测精度。同时,引用广西1995-2010年农机总动力以及相关影响因素的数据进行测试,验证了模型的有效性。
译  名:
Agricultural Machinery Demand Forecasting in Guangxi Province Based on Generalized Regression Neural Network
作  者:
Luo Wei1,2(1.School of Traffic & Transportation Engineering,Central South University,Changsha 410075,China;2.School of Management,Guilin University of Technology,Guilin 541004,China)
关键词:
agriculture machinery;generalized regression;neural network;demand forecasting;cross validation
摘  要:
Proposed an agricultural machinery demand forecasting model based on the generalized regression neural network.This model is based on GRNN,it used the circulation testing algorithm combined with k-fold cross validation for parameters optimization and network training,and achieved satisfying forecasting precision in the case of small samples.By using the data of total power agricultural machinery and relevant factors from the year 1995 to 2010 in Guangxi Province,we tested and verified the effectiveness of the model.

相似文章

计量
文章访问数: 6
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊