当前位置: 首页 > 文章 > 基于SVM方法的SPOT-5影像植被分类 东北林业大学学报 2014 (1) 53-58
Position: Home > Articles > Vegetation Extraction in SPOT5 Image with SVM Method Journal of Northeast Forestry University 2014 (1) 53-58

基于SVM方法的SPOT-5影像植被分类

作  者:
黎良财;张晓丽;郭航
单  位:
省部共建森林培育与保护教育部重点实验室(北京林业大学)
关键词:
影像融合;Gram-Schmidt光谱锐化法;灰度共生矩阵;支持向量机;植被分类
摘  要:
运用SPOT-5全色和多光谱影像,采用支持向量机(SVM)法对森林植被进行分类研究,探讨了SVM法的分类能力以及纹理信息在森林植被分类中的影响。结果表明:Gram-Schmidt光谱锐化法是北京山区SPOT-5影像最佳的融合方法;SVM法在高分辨率影像森林植被分类中精度较高,不同核函数对分类精度的影响不显著;基于灰度共生矩阵产生的纹理信息能够提高SVM法的分类精度,3×3窗口是提高分类精度的最佳纹理窗口。
译  名:
Vegetation Extraction in SPOT5 Image with SVM Method
作  者:
Li Liangcai;Zhang Xiaoli;Guo Hang;Key Laboratory for Silviculture and Conservation of Ministry of Education,Beijing Forestry University;
关键词:
Image fusion;;Gram-Schmidt spectral sharpening method;;Gray level co-occurrence matrix(GLCM);;Support vector machine(SVM);;Vegetation extraction
摘  要:
The experiment was conducted to classify the forest vegetation with support vector machine( SVM) method based on SPOT-5 panchromatic and multispectral images and explore the ability with SVM method and the effect by texture information in forest vegetation classification. Gram-Schmidt spectral sharpening method is the best fusion method for SPOT-5 image in Beijing mountain areas. SVM method has higher classification accuracy with the fine resolution images in the forest vegetation extraction. There is no significant difference on classification accuracy with different kernel functions. Image texture information from Gray level co-occurrence matrix( GLCM) method can improve the classification accuracy by SVM method,and the best texture window of 3×3 windows can improve the classification accuracy obviously.

相似文章

计量
文章访问数: 12
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊