当前位置: 首页 > 文章 > 基于碳、氮稳定同位素技术的东太湖水生食物网结构 生态学杂志 2014,33 (6) 1534-1538
Position: Home > Articles > Food web structure of the East Lake Taihu by analysis of stable carbon and nitrogen isotopes Chinese Journal of Ecology 2014,33 (6) 1534-1538

基于碳、氮稳定同位素技术的东太湖水生食物网结构

作  者:
李云凯;贡艺
单  位:
上海海洋大学海洋科学学院
关键词:
稳定同位素;食物网结构;营养级;东太湖
摘  要:
稳定同位素技术是研究生态系统食物网中物质循环与能量流动的有效技术之一。碳稳定同位素比值(δ13C)常用来分析消费者食物来源,而氮稳定同位素比值(δ15N)常用来确定生物在食物网中的营养位置。本研究应用碳、氮稳定同位素技术构建了东太湖食物网结构。结果表明:东太湖食物网主要由两条营养传递途径组成,即浮游植物为初级生产者的浮游营养传递途径和苦草等大型水生植物为初级生产者的近岸底层营养传递途径,湖中9种主要鱼虾类能量主要来自近岸底层传递;翘嘴鲌(Erythroculter ilishaeformis)、鳜(Siniperca chuatsi)和鲶(Silurus sp.)作为湖泊中的顶极捕食者,具有相对最高的营养级,并占据食物网的顶层。
译  名:
Food web structure of the East Lake Taihu by analysis of stable carbon and nitrogen isotopes
作  者:
LI Yun-kai;GONG Yi;College of Marine Sciences,Shanghai Ocean University;National Engineering Research Centre for Oceanic Fisheries;Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources,Ministry of Education;
关键词:
stable isotope;;food web structure;;trophic level;;East Lake Taihu.
摘  要:
Stable isotope analysis is an effective tool in studying mass and energy dynamics in aquatic ecosystem. Stable carbon isotope ratios( δ13C) are commonly used to trace consumers' forging location; while stable nitrogen isotope ratios( δ15N) are used to estimate the trophic position of organism in the ecosystem. In this study,the food web of East Lake Taihu was constructed using stable isotope analysis with the aim of quantifying the trophic relationships among species and providing policy-makers scientific information for ecosystem-based management in Lake Taihu. Results showed that two trophic pathways were found in East Lake Taihu: the planktonic pathway and the littoral-benthic pathway,with phytoplankton and macrophytes as their carbon sources,respectively. The littoral-benthic pathway supports most of the fish populations. The top predators,carnivorous fishes such as culters,mandarin fish and catfish,dominate the highest trophic level.

相似文章

计量
文章访问数: 9
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊