当前位置: 首页 > 文章 > 小波和神经网络在柴油机故障诊断中的应用 农机化研究 2010,32 (10) 207-210
Position: Home > Articles > Application on Diesel Engine Fault Diagnosis Based on Wavelet and Neural Network Journal of Agricultural Mechanization Research 2010,32 (10) 207-210

小波和神经网络在柴油机故障诊断中的应用

作  者:
吴虎胜;吕建新;王茂生;许阳懿
单  位:
中国人民武装警察部队工程学院
关键词:
柴油机;故障诊断;小波包;神经网络
摘  要:
柴油机以其良好的动力性、可靠性、经济性在运输车辆和农用机械中广泛应用,但对其施行及时的不解体故障诊断却并非易事。为此,以配气机构故障为例,提出将小波包分解与神经网络结合的故障诊断方法。先对振动信号应用小波阀值法降噪,再进行小波包分解,构造小波包特征向量作为故障样本,并用训练好的BP神经网络进行故障识别,试验结果证明了该方法的有效性。
译  名:
Application on Diesel Engine Fault Diagnosis Based on Wavelet and Neural Network
作  者:
Wu Husheng,Lv Jianxin,Wang Maosheng,Xu Yangyi ( Engineering College of CAPF,Xi'an 710086,China)
关键词:
diesel engine; fault diagnosis; wavelet packets; neural networks
摘  要:
Diesel engine is widly used in transport vehicle and farm machine because of its good dynamic performance,economy and reliability,but it is not easy to be diagnosed without dismantlement and in time. Making valve train for example,the diagnostic method about combination of wavelet and neural network is presented in this paper. First,it denoises the vibration signals with wavelet thresholding and adopts wavelet packet to decompose the signal,then constructs the wavelet packet energy eigenvector as fault samples. Finally,use the BP neural network to diagnose the fault. The practical example shows the method is available.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊