当前位置: 首页 > 文章 > 基于BP神经网络的土壤贮水量预报模型研究 安徽农业科学 2010,38 (15) 493-494+506
Position: Home > Articles > Based on BP Neural Network Forecasting Model of Soil Water Storage Journal of Anhui Agricultural Sciences 2010,38 (15) 493-494+506

基于BP神经网络的土壤贮水量预报模型研究

作  者:
武文红;杜贞栋;刘现伟;黄静;刘兵
单  位:
山东省水利科学研究院;山东理工大学轻工与农业工程学院;山东农业大学水利土木工程学院
关键词:
冬小麦;气象资料;土壤贮水量;BP神经网络;预测
摘  要:
[目的]为实现作物的实时灌溉提供科学依据。[方法]利用实测气象资料、桓台县节水灌溉试验站2008~2009冬小麦试验资料等建立BP神经网络预报模型,应用Matlab神经网络工具箱,采用Trainlm算法进行模型训练,对试验田的土壤贮水量进行预测。[结果]基于BP神经网络的土壤贮水量预报模型的泛化能力较强;在冬小麦日耗水量较大的拔节、扬花、灌浆3个时期,该模型的预报精度较高,稳定性较好。[结论]基于BP神经网络的土壤贮水量预报模型在冬小麦耗水较大时期的模拟值具有较高的精度。
译  名:
Based on BP Neural Network Forecasting Model of Soil Water Storage
作  者:
WU Wen-hong et al(Water Conservancy and Civil Engineering College,Shandong Agricultural University,Tai'an,Shandong 271018)
关键词:
Winter wheat;Meteorological data;Soil water storage;Back-propagation neural network;Forecast
摘  要:
[Objective] The study aimed to provide the scientific basis for realizing the real-time irrigation of crops.[Method]The BP neural network forecasting model was established by the measured meteorological data,2008-2009 winter wheat test data of water-saving irrigation Huantai County Experiment Station.Simulated training was conducted by applying neural network toolbox Mat lab and rainlm,at the same time soil water storage was predicted.[Result]The results showed that the BP neural network forecasting model had a great generalization ability,the model had a higher forecast accuracy and better stability in stage of jointing,blooming and grouting of winter wheat.[Conclusion]The simulation value had a high accuracy in stage of a big soil water storage of winter wheat.

相似文章

计量
文章访问数: 8
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊