当前位置: 首页 > 文章 > 土壤有机质高光谱遥感和地统计定量预测 农业工程学报 2009,25 (3) 142-147+8
Position: Home > Articles > Quantitative prediction of soil organic matter content using hyper spectral remote sensing and geo-statistics Transactions of the Chinese Society of Agricultural Engineering 2009,25 (3) 142-147+8

土壤有机质高光谱遥感和地统计定量预测

作  者:
程朋根;吴剑;李大军;何挺
单  位:
国土资源部土地利用重点实验室;东华理工大学地球科学与测绘工程学院
关键词:
高光谱遥感;反演分析;土壤有机质含量;地统计学;定量反演模型;定量预测
摘  要:
通过两种不同的尺度进行了土壤有机质含量的预测,在全县范围(大尺度)内运用地统计方法进行最优无偏内插估计,得到全县土壤有机质含量的空间分布格局。在小尺度高光谱Hyperion影像范围内,确定623.6 nm处反射率倒数之对数的一阶微分与564.4nm处反射率倒数之对数的一阶微分的比值为土壤有机质的敏感变量,运用多元统计分析方法,确立各土壤有机质高光谱定量最佳反演模型,并把该模型应用于高光谱影像进行有机质含量定量填图,取得了很好的预测效果(R2=0.8684)。同时为了进行客观比较,基于同一尺度,利用30个样点进行地统计空间插值定量预测,比较两种预测结果,通过分析得出由于地统计学受到样点的数目、分布和间距情况以及内蕴假设的影响,其预测效果不如高光谱遥感反演模型。
译  名:
Quantitative prediction of soil organic matter content using hyper spectral remote sensing and geo-statistics
作  者:
Cheng Penggen 1 ,Wu Jian 1,2,3 ,Li Dajun 1 ,He Ting 3 (1.Faculty of Geosciences and Geomatics,East China Institute of Technology,Fuzhou 344000,China; 2.School of Resource and Environmental Science,Wuhan University,Wuhan 430079,China; 3.Key Laboratory of Land Use,Ministry of Land and Resources,Beijing 100035,China)
关键词:
hyper-spectral remote sensing,regression analysis,soil organic matter content,geo-statistics,quantitative regression model,quantitative prediction
摘  要:
Soil organic matter(SOM)content was predicted at two different scales.At a large scale,the geo-statistical method was applied to interpolate the spatial distribution of SOM throughout Hengshan County of China.Additionally, at a small scale in Hyperion image,by analyzing the correlation between spectrally reflective data and SOM concentrate, the ratio of the reflectivity reciprocal-logarithm’s first derivative of 623.6 nm against the reflectivity reciprocal-logarithm’s first derivative of 564.4 nm was selected as the sensitive regression variable,and the best multivariate retrieval model was developed.Then the retrieval model was utilized to the hyper-spectral data for SOM quantitative mapping,and the adjusted R square coefficient of 0.8684 revealed a precise result.For objective comparison, 30 soil samples were used for spatial interpolation in geo-statistical way at the same scale in Hyperion imagery.After comparing and analyzing the two methods,it indicates that the predicted result of geo-statistics is not so good as that by hyper-pectral retrieval way due to the influences of sample quantities,sample distributions,sample intervals together with the inner-inclusion hypothesis.

相似文章

计量
文章访问数: 11
HTML全文浏览量: 0
PDF下载量: 1

所属期刊

推荐期刊