当前位置: 首页 > 文章 > 基于粒子群寻优的支持向量机番茄红素含量预测 农业机械学报 2012,43 (4) 143-147+155
Position: Home > Articles > Lycopene Content Prediction Based on Support Vector Machine with Particle Swarm Optimization Transactions of the Chinese Society for Agricultural Machinery 2012,43 (4) 143-147+155

基于粒子群寻优的支持向量机番茄红素含量预测

作  者:
刘伟;王建平;刘长虹;应铁进
单  位:
合肥工业大学电气与自动化工程学院;浙江大学生物系统工程与食品科学学院
关键词:
支持向量机;粒子群优化;色差值;番茄红素
摘  要:
应用支持向量机(SVM)通过色差值对番茄果实番茄红素含量预测进行建模,解决预测过程受影响因素多、参数互相关联、难以建立精确模型问题。为提高预测精度,将SVM参数选择和输入变量的选取看作组合优化问题,通过赤池信息准则(AIC)构造组合目标优化函数,采用粒子群算法(PSO)进行目标函数搜索,提高了搜索效率。对采后储藏不同成熟度番茄进行的测量表明,所提预测建模算法在番茄红素的预测中具有良好的性能,为番茄红素的便捷、无破坏性测量提供了一种方法。
译  名:
Lycopene Content Prediction Based on Support Vector Machine with Particle Swarm Optimization
作  者:
Liu Wei1,2 Wang Jianping1 Liu Changhong3 Ying Tiejin3(1.School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China 2.Key Laboratory of Machine Vision and Intelligence Control Technology,Hefei University,Hefei 230601,China 3.School of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China)
关键词:
Support vector machine,Particle swarm optimization,Color-difference,Lycopene
摘  要:
Color-difference was presented to assess the lycopene content conveniently and non-destructively.Due to excessive affecting factors and strong correlation among the parameters in the process,the support vector machine(SVM) was used to set up the predict model.The selection and simplification of the feature parameters was discussed.A compound optimal objective function based on Akaike information criterion(AIC) was constructed.The particle swarm optimization(PSO) algorithm was used to search the optimal value of the objective function and enhance the efficiency.The predictable method had good performance in assessing the lycopene content of different maturity stages.

相似文章

计量
文章访问数: 5
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊