当前位置: 首页 > 文章 > 利用图像处理技术评定猪肉等级(英文) 农业工程学报 2007,23 (4) 242-248
Position: Home > Articles > Evaluating pork grade by digital image processing Transactions of the Chinese Society of Agricultural Engineering 2007,23 (4) 242-248

利用图像处理技术评定猪肉等级(英文)

作  者:
于铂;郑丽敏;任发政;田立军
单  位:
中国农业大学信息与电气工程学院;中国农业大学食品科学与营养工程学院
关键词:
图像处理技术;猪肉等级;人工神经网络
摘  要:
为综合评定猪肉等级,该研究实测活体重、胴体重、背膘厚、右半胴体重、右半胴体的主要瘦肉重和眼肌面积,对肉色和大理石纹进行感观评分,并计算瘦肉率和屠宰率,同时固定物距和焦距,在固定光源下,使用数码相机拍摄80幅猪的左半胴体和眼肌面积图像并保存。经图像处理并进行特征提取后,建立图像特征与等级的关系,并用反向传播神经网络(BPNN)方法进行等级评定。结果表明,实际脂肪厚度与图像脂肪厚度、屠宰率与臀部图像面积、实际眼肌面积与图像眼肌面积、眼肌区域的肉色与图像眼肌肉色2G-B,R+G、瘦肉率与图像脂肪厚度和图像眼肌面积相关均有较高的相关关系(p<0.01),基于图像处理和BPNN技术可以快速准确的评定猪肉等级。
译  名:
Evaluating pork grade by digital image processing
作  者:
Yu Bo1,Zheng Limin1,Ren Fazheng2,Tian Lijun1 (1.College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China;2.College of Food Science and Nutritional Engineering,China Agricultural University,Beijing 100083,China)
关键词:
digital image processing;pork grading;back propagation neural network
摘  要:
Left half carcass and loin eye pictures of 80 pigs were taken with a digital camera with fixed lens length and focus.After image processing, features were abstracted from the images.The correlative image features and the grades were used to train a Back Propagation Neural Network(BPNN) based on Digital Image Processing(DIP).Results indicate that fat thickness has significant relationship with image fat thickness(p<0.01).Carcass yield is correlative with image hunkers(p<0.01).Loin-eye area has a strong relationship with image loin-eye area(p<0.01).Muscle color is correlative with the mean 2G-B and the mean R+G of lean pixels in loin-eye region(p<0.01).Intramuscular fat characteristic is correlative with image intramuscular fat characteristic(p<0.01).Lean meat percentage was correlative with image fat thickness and image loin-eye area(p<0.01).In conclusion,the BPNN based on DIP can be used to evaluate pork grading quickly and accurately.

相似文章

计量
文章访问数: 14
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊