当前位置: 首页 > 文章 > 表面活性剂改性纳米羟基磷灰石对Cd2+吸附研究 农业环境科学学报 2019,38 (8) 1901-1908
Position: Home > Articles > Adsorption capacity of surfactant-modified nano-hydroxyapatite for Cd2+ Journal of Agro-Environment Science 2019,38 (8) 1901-1908

表面活性剂改性纳米羟基磷灰石对Cd2+吸附研究

作  者:
尹英杰;楚龙港;朱司航;李阳;晏朝睿;商建英
单  位:
中国农业大学资源与环境学院
关键词:
纳米羟基磷灰石;SDBS改性;聚集;吸附;Cd2+
摘  要:
为了研究纳米羟基磷灰石(nHAP)的聚集特性对其吸附性能的影响,选取阴离子型表面活性剂十二烷基苯磺酸钠(SDBS)对nHAP进行改性,以减小其聚集程度.利用TEM、Zetasizer、XRD和FTIR对改性前后nHAP的形态和结构进行表征,通过批量实验考察SDBS改性对nHAP吸附特性的影响,并深入探讨了SDBS对nHAP吸附Cd2+的影响机理.结果表明:SDBS改性后nHAP聚集体粒径和Dh值均显著减小;XRD和FTIR结果显示SDBS为表面改性,并为nHAP引入了新的官能团SO 2-3;未改性nHAP(B-HAP)和SDBS改性nHAP(S-HAP)对Cd2+的吸附动力学过程更符合拟二级动力学模型,其中S-HAP的k2值是B-HAP的1.85倍;等温吸附过程更符合Freundlich模型,比较KF值可知,S-HAP对Cd2+的吸附能力显著高于B-HAP.SDBS改性增强nHAP吸附能力的可能机制主要包括:抑制聚集,从而增大比表面积;引入的新官能团为Cd2+的吸附提供了更多的位点.
译  名:
Adsorption capacity of surfactant-modified nano-hydroxyapatite for Cd2+
作  者:
YIN Ying-jie;CHU Long-gang;ZHU Si-hang;LI Yang;YAN Chao-rui;SHANG Jian-ying;College of Resource and Environment, China Agricultural University;Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences;Key Laboratory of Plant-Soil Interactions, Ministry of Education;Key Laboratory of Arable Land Conservation(North China), Ministry of Agriculture;
关键词:
nano hydroxyapatite;;SDBS modification;;aggregation;;adsorption;;Cd2+
摘  要:
This study investigated the effect of the aggregation properties of nano-hydroxyapatite(nHAP)on its adsorption capacity. nHAP was modified by an anionic surfactant, sodium dodecyl benzene sulfonate(SDBS), to minimize its aggregation. Transmission electron microscopy(TEM), zetasizer, X ray diffraction(XRD), and fourier transform infrared spectroscopy(FTIR)were used to characterize the morphology and structure of nHAP. Then, the effect of SDBS modification on the adsorption capacity of nHAP was investigated using batch experiments and the possible mechanism of the effect of SDBS on nHAP adsorption of Cd~(2+)was examined. The results of the present study showed the particle size and hydrodynamic diameter(Dh)value of nHAP aggregates markedly decreased after SDBS modification. XRD and FTIR analysis indicated that the modification took place only on the surface of nHAP and a new functional group SO_3~(2-) was introduced on the surface of nHAP, respectively. Adsorption kinetics of unmodified nHAP(B-HAP)and SDBS modified nHAP(S-HAP)were better described by the pseudo-second order model in comparison to the pseudo-first order model. The k2 value of S-HAP was 1.85 times that of BHAP. The isothermal adsorption process was more in line with the Freundlich model. The adsorption capacity of S-HAP for Cd~(2+)was higher than that of B-HAP as evident from the comparison of KF values. The mechanisms of SDBS modification which enhanced the adsorption capacity of nHAP mainly included:Modification of nHAP with SDBS increased the specific surface area of nHAP and minimized the aggregation of nHAP; Introduction of a new functional group on the surface of nHAP provided more adsorption sites for Cd~(2+).

相似文章

计量
文章访问数: 17
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊