当前位置: 首页 > 文章 > 基于GF-1与Landsat-8的康保县叶面积指数遥感反演研究 中南林业科技大学学报 2018 (1) 43-48
Position: Home > Articles > Modeling LAI of Kangbao county using GF-1 and Landsat-8 image Journal of Central South University of Forestry & Technology 2018 (1) 43-48

基于GF-1与Landsat-8的康保县叶面积指数遥感反演研究

作  者:
徐晓雨;孙华;王广兴;林辉;任蓝翔;崔云蕾
单  位:
林业遥感大数据与生态安全湖南省重点实验室;Department of Geography;Southern Illinois University at Carbon dale
关键词:
叶面积指数;逐步回归分析;Logistic回归分析;地理加权回归分析;主成分分析;GF-1;Landsat-8
摘  要:
以GF-1和Landsat8遥感影像为数据源,采用逐步回归、非线性Logistic回归和基于空间位置的地理加权回归3种方法,结合134个野外样地调查数据,在河北省康保县开展叶面积指数反演研究,并对结果进行精度检验。结果表明:(1)在荒漠化地区,GF-1和Landsat-8遥感影像提取的植被指数因子与LAI均有较高的相关性。运用主成分分析方法对植被指数因子进行处理,可以有效消除各影响因子间的共线性。(2)基于GF-1和Landsat-8影像分别建立的3种模型,均以地理加权回归决定系数最大,均方根误差最小,反演精度最高。(3)国产GF-1数据反演LAI效果优于Landsat-8,可以代替Landsat-8数据进行叶面积指数的估测。
译  名:
Modeling LAI of Kangbao county using GF-1 and Landsat-8 image
作  者:
XU Xiaoyu;SUN Hua;WANG Guangxing;LIN Hui;REN Lanxiang;CUI Yunlei;Key Laboratory of Forestry Remote Sensing Based Big Data & Ecological Security for Hunan Province;Department of Geography, Southern Illinois University at Carbon dale;
关键词:
LAI;;stepwise regression;;logistic regression;;GWR regression;;PCA;;GF-1;;Landsat-8
摘  要:
Leaf area index(LAI) is an important indicator of forest structural parameter. In this study, a novel method that combined PCA with a linear stepwise regression, a logistic-model and GWR regression was developed to derive an integrated regression model of LAI.A total of 134 sample plots were systematically selected in the study area-Kangbao County, Hebei province and LAI data were collected. Landsat-8 and GF-1 image were acquired. The results were validated using the observations of sample plots and showed that:(1)In the desertification area, the vegetation index and LAI extracted by GF-1 and Landsat-8 had a high correlation. The PCA method can be used to eliminate the collinearity of the vegetation index factors.(2) The estimation accuracy of GWR regression was the highest for both GF-1 and Landsat-8 data with the greatest determination coefficient and smallest root mean square error(RMSE).(3) Inversion of LAI by domestically produced GF-1 data in the study area is better than that of Landsat-8, and can be used as a substitute for Landsat-8 data for estimation of LAI.

相似文章

计量
文章访问数: 11
HTML全文浏览量: 0
PDF下载量: 1

所属期刊

推荐期刊