当前位置: 首页 > 文章 > 基于粗集的支持向量机在故障诊断中的应用 甘肃农业大学学报 2008,43 (3) 144-147
Position: Home > Articles > The application of support vector machine(SVM) in fault diagnosis based on rough set Journal of Gansu Agricultural University 2008,43 (3) 144-147

基于粗集的支持向量机在故障诊断中的应用

作  者:
韩俊英;刘成忠
单  位:
甘肃农业大学信息科学技术学院
关键词:
属性约简;故障诊断;粗集;支持向量机
摘  要:
根据支持向量机分类的基本原理,通过应用粗集理论方法对样本数据进行了预处理,去除冗余特征,提高了支持向量机分类效率.通过对涡轮机故障诊断,认为该方法可以提高故障诊断精度和诊断效率.
译  名:
The application of support vector machine(SVM) in fault diagnosis based on rough set
作  者:
HAN Jun-ying,LIU Cheng-zhong (College of Information Science & Technology,Gansu Agricultural University,Lanzhou 730070,China)
关键词:
feature reduct;fault diagnosis;rough set;support vector machine(SVM)
摘  要:
The basic principles of classification of support vector machine(SVM)was briefly introduced in this paper,and then a new method aiming to improve the efficiency of classification of SVM was proposed.Among which the Rough Set Theory was applied for data preprocessing of samples,so that the redundant features in the samples were removed.As a case study,this method was used for the actual turbine fault diagnosis.The result indicated that this method could improve the accuracy and efficiency of fault diagnosis.

相似文章

计量
文章访问数: 7
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊