当前位置: 首页 > 文章 > 基于卡尔曼滤波算法的电动汽车铅酸电池荷电状态的估算 河南农业大学学报 2015,49 (3) 357-362
Position: Home > Articles > Estimation of electric vehicle lead-acid battery SOC based on Kalman filtering algorithm Journal of Henan Agricultural University 2015,49 (3) 357-362

基于卡尔曼滤波算法的电动汽车铅酸电池荷电状态的估算

作  者:
陈东照;贾利军
单  位:
河南机电职业学院
关键词:
电动汽车;卡尔曼算法;荷电状态;动力电池
摘  要:
在卡尔曼滤波法计算方式的基础上对电动汽车动力电池组荷电状态进行组合估算,根据实际工况及时调整变量,并结合纯电动汽车行驶工况的特点,将电量回收、充放电电压和电流、以及环境温度等有效变量基于卡尔曼滤波算法进行优化。试验结果表明,优化后的卡尔曼算法能够对纯电动汽车在行驶过程中的剩余电量进行估算,其估算误差小于8%,满足目前对铅酸动力电池SOC估算的误差要求。
译  名:
Estimation of electric vehicle lead-acid battery SOC based on Kalman filtering algorithm
作  者:
CHEN Dongzhao;JIA Lijun;Henan Mechanical and Electrical Vocational College;
关键词:
electric vehicle;;Kalman algorithm;;state of charged;;power battery
摘  要:
On the basis of Kalman filtering method calculating ways of electric vehicle power battery charged state are estimated and adjusted in time according to the actual working condition variables,and combined with the characteristics of the pure electric vehicle driving cycle,the battery recycling,charge and discharge voltage and current,and effective variables such as environment temperature based on Kalman filtering algorithm are optimized. The test results show that the optimized Kalman algorithm can be of pure electric vehicles in the process of driving of the real-time estimation. Its estimation error is less than 8%,meeting the current requirements for lead-acid battery SOC estimation.

相似文章

计量
文章访问数: 12
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊