当前位置: 首页 > 文章 > 基于自组织特征映射神经网络的河北省土壤水资源分区研究 节水灌溉 2009 (12) 29-31
Position: Home > Articles > Study on Zoning of Soil-water Resource of Hebei Province Based on Self-organizing Feature Map Neural Network Water Saving Irrigation 2009 (12) 29-31

基于自组织特征映射神经网络的河北省土壤水资源分区研究

作  者:
张宽义;杨路华;夏辉;高惠嫣
单  位:
河北农业大学城乡建设学院;河北水利水电勘测设计研究院
关键词:
土壤水资源;分区指标;自组织特征映射神经网络
摘  要:
土壤水资源分区是土壤水资源评价和开发利用的前提,河北省地形地貌复杂、植被种类繁多,综合考虑影响土壤水资源的各类因素,选取了地形地貌、土壤类型、干旱指数及植被条件4个评价指标,应用自组织特征映射神经网络对河北省土壤水资源进行了分区,将河北省土壤水资源分为8区。其结果表明自组织特征映射神经网络能够对样本进行无监督的自动分类,保持其拓扑结构不变,具有自组织、自适应能力,且具有较强的容错能力,对河北省土壤水资源分区取得了较好的结果。
译  名:
Study on Zoning of Soil-water Resource of Hebei Province Based on Self-organizing Feature Map Neural Network
作  者:
ZHANG Kuan-yi 1,YANG Lu-hua 2,XIA Hui 2,GAO Hui-yan 2 (1.Hebei Research Institute of Investigation & Design of Water Conservancy & Hydropower,Shijiazhuang 050081,China;2.College of Urban and Rural Construction,Hebei Agricultural University,Baoding 071001,Hebei Province,China)
关键词:
soil-water resource;zoning indexes;self-organizing feature map(SOM) neural network
摘  要:
Soil-water resource zoning is the foundational basis of evaluation and utilization of soil-water resource.Topography,vegetation and soil texture in Hebei province is complex.In this paper,four evaluation indexes,such as topography,soil texture,aridity,and vegetation,were chosen and self-organizing feature map(SOM) neural network was applied for soil-water resource zoning of Hebei province,which was classified into 8 soil-water resource sub-zones.The result showed that the sample could be classified automatically without supervision by using the method of SOM neural network,which has strong self-learned ability,self-adaptive ability and error-permissive ability.The zoning result was accorded with the actual condition of Hebei province and could be used for further soil-water resource evaluation.

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊