当前位置: 首页 > 文章 > 基于二叉树结构聚类算法的彩色图像分割研究 河南农业大学学报 2008,42 (4) 461-464
Position: Home > Articles > C-Means Clustering Algorithm Based on Binary Tree Structure for Color Image Segmentation Research Journal of Henan Agricultural University 2008,42 (4) 461-464

基于二叉树结构聚类算法的彩色图像分割研究

作  者:
王浩川;王学军;刘艳春;闻跃华
单  位:
中国工商银行股份有限公司河南分行;中州大学信息工程学院
关键词:
彩色图像分割;最优阈值化;二叉树;聚类算法
摘  要:
提出了一种基于二叉树结构的彩色图像分割方法,首先对待分割图像采用最优阈值化方法获取R,G,B3个颜色空间的最佳阈值,然后通过构造自适用二叉树进行一次粗分割提取目标区域,最后采用C-均值聚类算法对二叉树的每个叶子节点进行精确分割.试验表明,该算法可以在保留原图像中大部分的信息的基础上,对目标物体进行有效的分割.
译  名:
C-Means Clustering Algorithm Based on Binary Tree Structure for Color Image Segmentation Research
作  者:
WANG Hao-chuan1,WANG Xue-jun1,LIU Yan-chun2,WEN Yue-hua2 (1.School of Information Engineering of Zhongzhou University,Zhengzhou 450044,China;2.Henan Branch,Industrial and Commercial Bank of China Ltd.,Zhengzhou 450008,China)
关键词:
color image segmentation;optimal threshold;binary tree;clustering algorithm
摘  要:
An effective segmentation method based on binary tree is proposed in this paper.First,this method uses the optimal threshold to get the best threshold in the R,G,B color space.Then a rough extract of the color image is gotten by constructing the self-adapting binary tree.After extracting,C-means clustering algorithm is used to improve the accuracy of the segmentation of the binary tree leaves.Experiment results show that this new method can be implemented efficiently.It can obtain high segmentation accuracy and reserve mass information of the original color image at the same time.

相似文章

计量
文章访问数: 9
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊