当前位置: 首页 > 文章 > 灰色预测模型在山东省粮食自给率预测上的应用 江西农业学报 2017,29 (2) 119-123
Position: Home > Articles > Application of Grey Prediction Model in Prediction of Food Self-sufficient Rate of Shandong Province Acta Agriculturae Jiangxi 2017,29 (2) 119-123

灰色预测模型在山东省粮食自给率预测上的应用

作  者:
任雅婷;曹生国;刘栋
单  位:
华能澜沧两水电股份有限公司;中铁上海设计院集团有限公司;河海大学社会发展研究所
关键词:
粮食自给率;灰色预测模型;曲线估计;粮食安全预测
摘  要:
通过分析2005~2014年山东省粮食总产量和人口总数的动态变化数据,分析研究了山东省粮食安全现状。借助Matlab程序及SPSS 19.0软件,运用灰色预测模型、曲线估计、线性回归等方法对粮食自给率各变量分别进行了预测模型拟合,得出山东省2015~2025年粮食自给率呈上升趋势,但增速放缓。最后从保障耕地面积、提高粮食单产、控制人口增长、建立粮食安全储备体系4个方面提出了保障粮食安全的对策与建议,以期为山东省制定粮食安全与耕地保护政策提供参考。
译  名:
Application of Grey Prediction Model in Prediction of Food Self-sufficient Rate of Shandong Province
作  者:
REN Ya-ting;CAO Sheng-guo;LIU Dong;Institute of Social Development,Hohai University;Huaneng Lancang Hydropower Limited Company;China Railway Shanghai Design Institute Group Company Limited;
关键词:
Food self-sufficient rate;;Grey prediction model;;Curve estimation;;Food safety prediction
摘  要:
According to the dynamic data of total grain output and gross population in Shandong province from 2005 to 2014,we analyzed the present situation of food safety in Shandong province. At the same time,with the aid of Matlab program and SPSS19. 0 software,using grey prediction model,curve estimation,linear regression and other methods,the author constructed and verified the simulation model which used several variables to predict the grain self-sufficiency rate. It is predicted that the yearly grain self-sufficient rate of Shandong province from 2015 to 2025 will show a rising trend,but its increasing rate will become slower and slower. Finally,we put forward the countermeasures and suggestions for guaranteeing food security from the following four aspects:protecting cultivated land area,enhancing grain yield per unit area,controlling population growth,and setting up food security reserve system,which can provide reference for the food security and cultivated land protection of Shandong province.

相似文章

计量
文章访问数: 19
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊