当前位置: 首页 > 文章 > 基于扩展卡尔曼滤波的锂电池SOC估计 农业装备与车辆工程 2017 (8) 45-48
Position: Home > Articles > Li-ion Battery SOC Estimation Based on EKF Agricultural Equipment & Vehicle Engineering 2017 (8) 45-48

基于扩展卡尔曼滤波的锂电池SOC估计

作  者:
刘振华;陈国平;朱强
单  位:
上海电动工具研究所(集团)有限公司;上海理工大学光电信息与计算机工程学院
关键词:
荷电状态;电池模型;扩展卡尔曼滤波;状态估计
摘  要:
锂电池荷电状态用来描述电池剩余电量的多少,是电池管理系统中的核心参数。电池循环次数、瞬间大电流以及温度等因素都会使电池特性发生变化。针对动力电池这一动态非线性系统,在二阶RC电池等效模型中增加了表征温度效应的等效电阻,提出了一种基于扩展卡尔曼滤波的锂电池荷电状态估计算法。该算法通过构建状态方程和量测方程,经历预测、修正和估算3阶段,实现了对锂电池的荷电状态的估算。
译  名:
Li-ion Battery SOC Estimation Based on EKF
作  者:
Liu Zhenhua;Chen Guoping;Zhu Qiang;School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology;Shanghai Electric Tool Research Institute (group) Co., Ltd.;
关键词:
state of charge;;battery model;;EKF;;state estimation
摘  要:
The state of charge of lithium battery is used to describe the amount of remaining battery power. The number of cell cycle factors, instantaneous large current and temperature will cause the battery characteristics change. According to the power battery nonlinear system, we have added the equivalent resistance to the temperature effect in the two order RC cell equivalent model, and an estimation algorithm for the state of charge of lithium battery based on EKF is proposed. This method achieves the SOC estimation of the airborne lithium battery by constructing the state equation and the measurement equation through forecasting, correcting and estimating stages.

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊