当前位置: 首页 > 文章 > 结合WT预处理的近红外光谱PLS算法预测鲜枣糖度 安徽农业科学 2011,39 (30) 597-599+603
Position: Home > Articles > Prediction on Sugar in Fresh Jujube Based on Near Infrared Spectroscopy PLS Algorithm Combining with WT Pretreatment Journal of Anhui Agricultural Sciences 2011,39 (30) 597-599+603

结合WT预处理的近红外光谱PLS算法预测鲜枣糖度

作  者:
汪西原;马毅;刘丹
单  位:
宁夏大学物理电气信息学院
关键词:
近红外光谱;小波变换;偏最小二乘法;鲜枣;糖度
摘  要:
[目的]研究结合WT预处理的近红外光谱PLS算法模型预测鲜枣糖度的方法。[方法]用S-G、MSC、FD、SD、WT和WT+MSC 6种预处理法,SMLR、PCR和PLS 3种算法模型,对60个鲜枣样品的近红外光谱数据进行预处理、糖度预测和建模精度分析,建立最佳算法的数学模型。[结果]在鲜枣糖度近红外光谱预处理阶段引进小波变换方法去除导数光谱噪声,得到了很好的去噪效果。不同的小波函数、分解尺度使消噪的结果有所不同。与常见的光谱预处理法相比,在选用db4-3小波函数、默认阈值情况下,采用WT+MSC预处理及建模算法为PLS时所建立的模型最好,其相关系数R为0.919 02,校正集标准差RMSEC为0.863,预测集标准差RMSEP为1.71。[结论]结合小波变换预处理的PLS算法模型可有效预测鲜枣糖度,改善模型的预测精度。
译  名:
Prediction on Sugar in Fresh Jujube Based on Near Infrared Spectroscopy PLS Algorithm Combining with WT Pretreatment
作  者:
WANG Xi-yuan et al(School of Physics and Electrical Information,Ningxia University,Yinchuan,Ningxia 750021)
关键词:
Near infrared spectroscopy;Wavelet transform(WT);Partial Least Square;Fresh Jujube;Sugar
摘  要:
[Objective]The aim was to study the method of predicting the sugar in the fresh jujube based on near infrared spectroscopy PLS algorithm models combining with the wavelet transform(WT) pretreatment.[Method]The near infrared spectroscopy data of 60 fresh jujube samples were made for the pretreatment,sugar prediction and modeling accuracy analysis by using 6 pretreatments including S-G,MSC,FD,SD,WT and WT+MSC and 3 algorithm models including SMLR,PCR and PLS and the optimum algorithm models was established.[Result]Introducing the wavelet transform method to remove the noise of derivative spectra in the near infrared spectral pretreatment stage of the fresh jujube sugar obtained a very good de-noise effect.The different wavelet function and decomposition scale had different de-nosing results.Compared with the common spectra pretreatment methods,under the conditions of selecting db4-3 wavelet function and the default threshold,the model established by adopting the WT + MSC pretreatment and the PLS modeling algorithm was best,with the correlation coefficient of 0.919 02,the calibration collection standard deviation RMSEC of 0.863 and the predict collection standard deviation RMSEP of 1.71.[Conclusion]PLS algorithm models combining with WT pretreatment could effectively predict the sugar in the fresh jujube and improve the predicting precision of the model.

相似文章

计量
文章访问数: 4
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊