当前位置: 首页 > 文章 > 基于粒子群算法的辊式磨粉机优化设计 农机化研究 2006 (8) 115-118
Position: Home > Articles > Optimization Design of Roller Mill Based on Particle Swarm Algorithms Journal of Agricultural Mechanization Research 2006 (8) 115-118

基于粒子群算法的辊式磨粉机优化设计

作  者:
欧建圣;常晓萍
单  位:
武汉工业学院;武汉工程职业技术学院信息工程系
关键词:
食品工业;磨粉机;优化设计;粒子群算法;喂料轨迹;入磨速度
摘  要:
采用粒子群算法和Matlab语言,以磨粉机的分流辊与快辊的水平距离及垂直距离、分流辊的转速及直径、快慢辊的斜置角度作为设计变量,以物料的喂料轨迹和物料的入磨速度作为多目标函数进行优化设计。仿真结果与原设计相比较,落点距轧点从39mm减小到1.4021mm,入磨速度也从1.795m/s提高到了2.0962m/s,有效地提高了磨粉机的工作效率。与基本型遗传算法优化结果相比,粒子群算法效果要好于基本型遗传算法。
译  名:
Optimization Design of Roller Mill Based on Particle Swarm Algorithms
作  者:
OU Jian-sheng1,CHANG Xiao-ping2 (1.Wuhan Engineering and Technology Institute, Wuhan 430080, China; 2.Wuhan Polytechnic University, Wuhan 430023, China)
关键词:
food industry; roller mill; optimization simulation; particle swarm algorithms; feeding trajectory; infeeding speed
摘  要:
Set feeding trajectory and infeeding speed as multiple target functions and take horizontal distance and vertical distance between feeding roller and fast roller, rotational speed and diameter of feeding roller and inclined angle between the fast roller and slow roller as design parameters, Particle Swarm algorithms and MATLAB were used in the optimization design of roller mill. Compared with the original design, distance between point of fall and roller point decreased from 39mm to 1.4022mm, infeeding speed increased from 1.795m/s to 2.0960m/s. The simulation results showed that the Particle Swarm algorithms excelled genetic algorithms and roller mill can work more efficiently.

相似文章

计量
文章访问数: 10
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊